[etrachloroethylene]

Tetrachloroethvlene

[etrachloroethy

C2C14 C2C14 C₂C1₄ cation of non-paramertic eries data 4-Method -Concentrations reported by a laboratory are not deterministic numbers. They represent a range, specified by laboratory-given measurement precision. This is usually a ± percentage of the reported concentration -a 10% precision means that the reported concentration is within a ± 10% percentage range of the reported concentration Laboratory reported concentrations are considered equal, if their ± 10% ranges overlap. If laboratory reported concentrations C₂C1 $C_{LR1} < C_{LR2}$ Then if $C_{LR1} \times 1,1 > C_{LR2} \times 0,9$ Tetrachloroeth Then C2C14 $C_{LR1} \sim C_{LR2}$ -Comparing reported concentrations with or without the precision range may result in different S statistic, and Z statistic, for two reasons - S will be directly different because the comparison differences - Var (S) will be different because of the difference in tied groups Therefore significance may be different wich results in differences in trend perceptions The two different approach are named here in this presentation "deterministic" and "fuzzy" C_2CL_4 C₂CL₄ C_2CL_4 6- Conci 6.1 Fuzzy aproach will results in larger correction terms i reflected in ,Z' statistic 6.2 There is no obvious reason, why Mann-Kendall trend ar series using determinsitic and fuzzy approach C₂C1₄ 6.3 Deviation of fuzzy ,S' can be both direction from dete therefore using the fuzzy aproach has not necessarily dan 6.4 Time series data structure needs to be looked into to

	C2C14	C ₂ Cl ₄	C ₂ Cl ₄
4	CAA A AA	naturate to	· AAA COAA
	EIN NI		-V/VL-C/V
		Artin Köhler	kahlor At
			NULLEI (
ene	Tetrachloroethy	lene Tetr5lorRtoK14	1+c (ov)
	vc		
Sample ID	Date S	S dat Z fuzzy Z dat Sample ID Date	

Sample ID	Date	VC concentration	S	S _{det}	Z _{fuzzy}	Z _{det}		Sample ID	Date	VC concentration	s	S dat	Z ₆₀₂₂
AE-4-5	2005.12.08	145						AE-4-5	2005.12.08	145			
AE-4-6	2006.03.29	143	0	-1				AE-4-6	2006.03.29	143	0	-1	
AE-4-7	2006.06.13	82,3	-2	-3				AE-4-7	2006.06.13	82,3	-2	-3	
AE-4-8	2006.09.19	89,6	-4	-4			I	AE-4-8	2006.09.19	89,6	-4	-4	
AE-4-9	2006.11.30	74,5	-6	-8				AE-4-9	2006.11.30	74,5	-6	-8	
AE-4-11	2007.06.12	129	-3	-7			\sim	AE-4-11	2007.06.12	129	-3	-7	-
AE-4-12	2007.09.10	135	0	-5			0.2	AE-4-12	2007.09.10	135	0	-5	-
AE-4-13	2007.12.07	376	7	2			h⊥o	AE-4-13	2007.12.07	376	7	2	
AE-4-14	2008.02.29	264	13	8				AE-4-14	2008.02.29	264	13	8	
AE-4-15	2008.05.28	129	14	6	1,27069	0,44901		AE-4-15	2008.05.28	129	14	6	1,2706
AE-4-16	2008.09.03	122	15	2	1,21395	0,07809	C	AE-4-16	2008.09.03	122	15	2	1,2139
AE-4-17	2008.12.03	62	5	-9	0,29623	-0,54987		AE-4-17	2008.12.03	62	5	-9	0,2962
AE-4-18	2009.03.05	80,2	-2	-17	-0,0657	-0,97796		AE-4-18	2009.03.05	80,2	-2	-17	-0,065
AE-4-19	2009.06.11	67,4	-11	-28	-0,58857	-1,48033		AE-4-19	2009.06.11	67,4	-11	-28	-0,588
AE-4-20	2009.09.17	63,5	-22	-40	-1,0952	-1,93237	m	AE-4-20	2009.09.17	63,5	-22	-40	-1,095
AE-4-21	2009.12.10	113	-19	-41	-0,83533	-1,80273	x	AE-4-21	2009.12.10	113	-19	-41	-0,835
AE-4-22	2010.03.22	52,8	-33	-57	-1,35184	-2,30875	-4	AE-4-22	2010.03.22	52,8	-33	-57	-1,351
			T					AE-4-23	2010.06.17	41,2	-50	-74	-1,895
								AE-4-24	2010.09.16	55,8	-62	-88	-2,191
-	Lotrac	blores						AE-4-25	2010.12.07	123	-54	-83	-1,807
HE	ELTAC							AE 4.20	2011 02 22	448	477	01	1.450

The reason for differences in "S" is obvious, a deterministicly different concetrations will be equal concentrations as fuzzy

Identical colors indicate tied groups. Depending on the comparison base (i.e. the last data in the time serie) the number and the content of earlier established tied groups may change

Sample ID	Date	12 DCA concentration	S	S _{dat}	Z fuzzy	Z _{det}		Sample ID	Date	12 DCA concentration	s	S _{det}	Z fuz
AE-20-22	2010.03.22	1,3					JP	AE-20-22	2010.03.22	1,3			
AE-20-23	2010.06.17	2,7	1	1				AE-20-23	2010.06.17	2,7	1	1	
AE-20-24	2010.09.16	2,8	2	3				AE-20-24	2010.09.16	2,8	2	3	
AE-20-25	2010.12.07	2,6	3	2				AE-20-25	2010.12.07	2,6	3	2	
AE-20-26	2011.03.23	2,7	4	3			hlo	AE-20-26	2011.03.23	2,7	4	3	
AE-20-27	2011.06.09	2,3	5	0				AE-20-27	2011.06.09	2,3	5	0	
AE-20-28	2011.09.22	1,7	1	-4				AE-20-28	2011.09.22	1,7	1	-4	
AE-20-29	2011.12.01	0,195	-6	-11			C	AE-20-29	2011.12.01	0,195	-6	-11	
AE-20-30	2012.03.22	1,9	-8	-13				AE-20-30	2012.03.22	1,9	-8	-13	
AE-20-31	2012.06.22	1,9	-10	-15	-0,86736	-1,26234)	AE-20-31	2012.06.22	1,9	-10	-15	-0,867
AE-20-32	2012.09.18	0,7	-18	-23	-1,39897	-1,72317		AE-20-32	2012.09.18	0,7	-18	-23	-1,398
AE-20-33	2012.12.13	1,6	-20	-28	-1,38818	-1,86023	X	AE-20-33	2012.12.13	1,6	-20	-28	-1,388
AE-20-34	2013.03.27	1,7	-22	-31	-1,36892	-1,84057	S	AE-20-34	2013.03.27	1,7	-22	-31	-1,368
AE-20-35	2013.06.01	1,4	-27	-38	-1,48957	-2,03473	1	AE-20-35	2013.06.01	1,4	-27	-38	-1,489
AE-20-36	2013.09.25	1	-37	-48	-1,84838	-2,33449		AE-20-36	2013.09.25	1	-37	-48	-1,848
AE-20-37	2013.12.19	1,6	-38	-52	-1,77948	-2,30551	~	AE-20-37	2013.12.19	1,6	-38	-52	-1,779
	Tata	hlower	thu	1	. т.	-		AE-20-38	2014.03.18	1,9	-37	-48	-1,587
	PLAC							1	VIEIIE				_

While tied groups, once established in the deterministic approach will persist and their influence is stable or increasing with increasing ,n', the fuzzy aproach can produce a smaller correction for larger ,n'

C ₂ CL ₄	C2C14	C2C14
lusions	Sof P	Red R
n VAR (S) calculations, k	nowever this will not i	necessarily
ene Tetrachloroethylene nalysis produces differe	nt trends for certain	Tetrachloroeth time
C2C14	C2C14	C2C14
erminsictic ,S' (regarding npening effect.	g zero ,S' as an absol	ut no trend),
explain the fuzzy, S' an	d,Z' behaviour	

