METHANE-To-Go-Europe: an upcoming airborne field campaign in the Netherlands, Italy and Balkan states

- CH₄, N₂O and SO₂ emissions from on-/off-shore natural gas and oil operations, power plants, smelters, waste and agriculture

H. Huntrieser¹, A. Roiger¹, D. Sauer¹, H. Schlager¹, M. Mertens¹, P. Hedelt², D. Loyola², and S. Schwietzke³

[1] Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany; [2] Institut für Methodik der Fernerkundung (DLR); [3] Environmental Defense Fund (EDF), Boulder, USA

Motivation

Methane (CH₄) is a well-mixed greenhouse gas that is ~80 times more potent than carbon dioxide (CO₂) on a timescale of 20 years and in focus of current mitigation strategies trying to reduce global warming since its lifetime is shorter (~10 years) in comparison to CO₂ (~100 years). Various oil and gas exploration regions have been identified by the United Nations Environmental Program (UNEP) as target for CH₄ studies. Besides the Persian/Arabian Gulf, Gulf of Mexico, Gulf of Guinea, and the North Sea, one of these selected regions is the Balkan. The latter is of special interest, because it is also well-known for heavy pollution (e.g. SO₂) and bad air quality. Here we introduce the **METHANE-To-Go-Europe project**, which is funded by the German Aerospace Center (DLR) and a replacement for the originally UNEP-funded **METHANE-To-Go project** (as announced in the abstract), which has been postponed due to the difficult political situation in the Arabian Gulf.

 $\rightarrow~$ A better quantification of anthropogenic CH₄ and SO₂ (and N₂O) emissions from pronounced European sources and their contribution to the atmospheric composition is needed for the development of successful mitigation strategies in Europe.

The METHANE-To-Go-Europe Field Campaign Targeting the Netherlands, Italy and the Balkan states

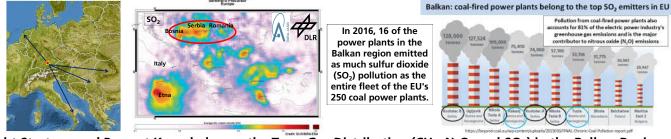
The field experiment aims to carry out **airborne in situ measurements of the greenhouse gases** CH_4 and nitrous oxide (N₂O), and a number of further trace species (SO₂, CO, NO and aerosols) **to quantify the emission rates from on-/off-shore natural gas and oil operations, outstanding power plants, smelters, and pronounced waste and agricultural sources**. In addition, emissions from larger cities in the selected target regions (Netherlands/Italy/Balkan) are of interest (e.g. Rotterdam, Naples and Belgrade). These emission rates will be compared to current emission inventories. Furthermore, **satellite validation is envisaged** with the TROPOspheric Monitoring instrument (**TROPOMI**) on Sentinel-5P (focusing on SO₂). The Balkan region is high-lighted as the European region with the strongest and most uncertain anthropogenic SO₂ sources.

Trace Gas / Aerosol Instrumentation and Modeling

			1
Instrument	Species/Parameter	Measurement Technique	L b
Dual QCLs* Aerodyne	CH ₄ , CO ₂ , CO, C ₂ H ₆ , N ₂ O, H ₂ O	Laser absorption Spectroscopy	n g la d
PICARRO	CH ₄ , CO ₂ , CO	Cavity Ring-down Spectroscopy	c
IT-CIMS	SO ₂	Ion-Trap Chemical Ionization Mass Spectrometry	n n v
ECO Physics TR	NO, NOy	Chemiluminescence Technique	re
Aerosol	Vol & non-vol. particles	Condensation Particle Counters plus Thermodenuder	n (1) p
MET PACKAGE	Wind (3-d), T	5 hole probe	s f

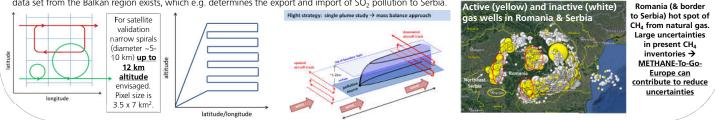
The operation of a novel dual Quantum Cascade Laser (QCL) instrument (Kostinek et al., 2019*) based on laser absorption spectroscopy to neasure CH_4 , N_2O and CO, and related trace gases as CO_2 and ethane (C_2H_6) is foreseen. The atter gases can be used to distinguish between lifferent CH₄ sources (flaring, venting and combustion). An ion-trap chemical ionization nass spectrometer (IT-CIMS) is envisaged for the neasurements of SO₂. Both instruments operate vith a high precision/accuracy and a temporal esolution of 0.5 to 1s (corresponding to 50-200 n). In addition, measurements of nitrogen oxides NO, NOy) and aerosols and other trace gases are planned to pinpoint different sources, and simulations with particle dispersion models for flight planning and post analyses (HYSPLIT), WRF-Chem and MECO(n) (MESSy-fied ECHAM and COSMO/MESSy models nested n times).

Mission Flights


Flights are planned with the research aircraft Falcon-20 of the DLR during three weeks in **October-November 2020**. From the home base in Oberpfaffenhofen near Munich (Germany), flights with overnight stops in the target regions are foreseen to perform detailed local flights.

DLR research aircraft Falcon-20

*(Kostinek, Roiger, et al., AMT, 2019, https://doi.org/10.5194/amt-12-1767-2019)


Flight region: Northern, Southern, and Eastern Part of Europe Depending on the Present Weather Situation

Flight Strategy and Present Knowledge on the Trace Gas Distribution (CH₄, N₂O, and SO₂) in the Balkan Region

• The proposed campaign includes both **survey flights** in the northern, southern and eastern part of Europe, as well as **single plume study flights** focusing on the emissions from single point sources as e.g. power plants. The emission fluxes will be estimated and compared to current emission inventories. Furthermore, **satellite validation** is envisaged with the TROPOMI instrument on Sentinel-5P (focus on SO₂).

There is a lack of detailed airborne CH₄ and N₂O measurements in Europe (compared to the U.S.) and the contribution from this region to the global CH₄ and N₂O mass balance is presently unknown. Rudimentary knowledge on the SO₂ distribution from satellite measurements (OMI and TROPOMI) is available, however no detailed airborne data set from the Balkan region exists, which e.g. determines the export and import of SO₂ pollution to Serbia.
Active (vellow) and inactive (white)

The METHANE-To-Go-Europe Team

- The Institute of Atmospheric Physics (PI: Dr. Anke Roiger; co-PI: Dr. Heidi Huntrieser) at the German Aerospace Center (DLR) are coordinating and conducting the field experiment (in close cooperation with the DLR Department of Flight Experiments) and performing the main data analysis.
- Validation of TROPOMI products are conducted in cooperation with the DLR Remote Sensing Technology Institute (Dr. Diego Loyola and Dr. Pascal Hedelt).
- Contact to local scientists in Serbia, Romania and Croatia has been initiated. The collaboration and support from the local partners is essential and key for the success of the project. Joint data analysis and publications are envisaged. We are also open for further collaborations with local scientists.

Deutsches Zentrum für Luft- und Raumfahrt e.V. **eMail:** Anke.Roiger@dlr.de <u>or</u> Heidi.Huntrieser@dlr.de

Institut für Physik der Atmosphäre http://www.dlr.de/ipa

