ChEESE

www.cheese-coe-eu

Center of Excellence for Exascale in Solid Earth

e-infrastructures and natural hazards. The Center of Excellence for Exascale in Solid Earth (ChEESE)

> EGU 2020 - 13497 5 May 2020

Arnau Folch, Josep de la Puente, Laura Sandri, Benedikt Halldórsson, Andreas Fichtner, Jose Gracia, Piero Lanucara, Michael Bader, Alice-Agnes Gabriel, Jorge Macías, Finn Lovholt, Alexandre Fournier, Vadim Monteiller, and Soline Laforet

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823844

Centers of Excellence (CoE)

Centers of Excellence have been funded under H2020 in order to:

- Promote research in HPC **applications** towards highly scalable, optimised codes and the path to Exascale performance
- Provision of **services** supporting different usage models for the community needs addressing the full scientific/industrial workflow
- Commitment to the **co-design** approach, including the identification of suitable applications relevant to the development of HPC technologies towards Exascale
- Provide specialised **training** and capacity building for increased adoption of advanced HPC in industry and academia
- Widening the **access to codes** and fostering transfer of know-how to user communities

ChEESE General Objectives

- 1. Preparation of **10 flagship codes** in the area of Solid Earth
- 2. To develop **12 Pilot Demonstrators** (PDs) and related **workflows** to enable services oriented to society on hazard assessment, urgent computing, and early warning forecast
- 3. Engage with the European Plate Observing System (EPOS) to facilitate **access to HPC applications**, infrastructures and large volumes of data across the SE Community.
- 4. In collaboration with the Consortium stakeholders (IUB), test the services in an **operational environment** and perform a market analysis for exploitation of services.
- 5. Provide specialized **training**, including on services and capacity building measures.

Consortium of 13 partners from 7 countries

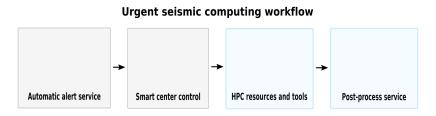
(BSC	BSC	Barcelona Supercomputing Center	
ETETER NAME 2. GEFER A VILLAMAGICA	INGV	Istituto Nazionale di Geofisica e Vulcanologia	
Icelandic Met Office	ΙΜΟ	Icelandic Met Office	
ETH zürich	ETH	Swiss Federal Institute of Technology	
	HLRS	High Performance Computing Center Stuttgart	
CINECA	CINECA	CINECA	
Technical University of Munich	тим	Technical University of Munich	
	LMU	Ludwig Maximillians Universität	
UNTERSTADIO E MÁLARA	UMA	Universidad de Malaga	
NGI	NGI	Norges Geotekniske Institutt	
	IPGP	Institut de Physique du Globe de Paris	
CITS	CNRS	Centre National de la Recherche Scientifique	
Bull atos technologies	BA	Bull SAS	

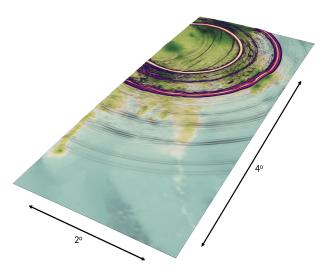
10 flagship (open source) codes

No	Area	Code name
1	- Computational Seismology	ExaHyPE
2		Salvus
3		SeisSol
4		SPECFEM3D
5	Magnetohydrodynamics	PARODY_PDAF
6		XSHELLS
7	Physical Volcanology	ASHEE
8		FALL3D
9	Tsunamis	T-HySEA
10		L-HySEA

- Intra-node optimization
- Thread parallelism
- Memory optimization
- Porting to accelerators
- Heterogeneous computing
- Load balance
- Fault tolerance
- Parallel asynchronous I/O
- Workflow manager
- Schedulers
- Pre-process utilities
- Visualization and post-process

12 Pilot Demonstrators and related services

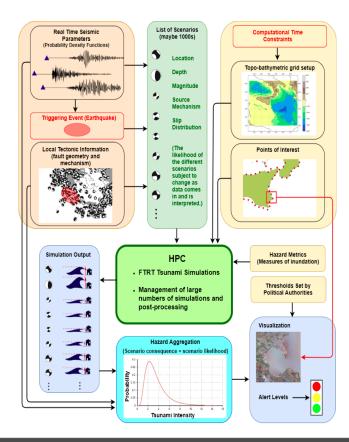

No	Pilot Demonstrator name	Area	Flagship Code	Related service
1	Urgent seismic simulations	CS	ExaHyPE, Salvus, SPECFEM3D	Urgent computing
2	Faster than real-time tsunami simulations	Т	T-HySEA, L-HySEA	Urgent computing
3	High-resolution volcanic plume simulation	PV	ASHEE, FALL3D	None
4	Physics-based tsunami-earthquake interaction	CS	SeisSol, ExaHyPE	None
5	Physics-based probabilistic seismic hazard assessment (PSHA)	CS	SeisSol, ExaHyPE, AWP-ODC(*)	Hazard assessment
6	Probabilistic volcanic hazard assessment (PVHA)	PV	FALL3D	Hazard assessment
7	Probabilistic tsunami hazard assessment (PTHA)	Т	T-HySEA L-HySEA	Hazard assessment
8	Probabilistic Tsunami Forecast (PTF) for early warning and rapid post event assessment	Т	T-HySEA	Early warning
9	Seismic tomography	CS	SPECFEM3D, Salvus	Other
10	Array-based statistical source detection and restoration and Machine learning from monitoring	CS PV	BackTrackBB (**)	None
11	Geomagnetic forecasts	MHD	PARODY_PDAF, XSHELLS	None
12	High-resolution volcanic ash dispersal forecast	PV	FALL3D	Urgent computing



Service typologies: urgent seismic simulations

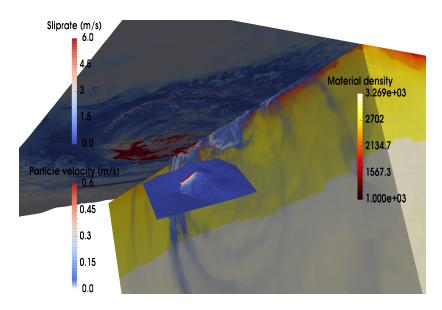
Codes ExaHyPE, Salvus, SPECFEM3D	
Lead partner(s)	ETH (L); BSC, INGV, LMU, TUM, IMO
TRL initial	3
TRL target	5-6

- Employ urgent supercomputing to obtain fast (hours) shaking maps for regions affected by recent earthquakes
- Physically-based 3D modelling of seismic waves
- Urgent seismic simulation workflow and protocol
- Test cases:
 - o South Iceland Seismic zone
 - o Turkey
 - o Mexico



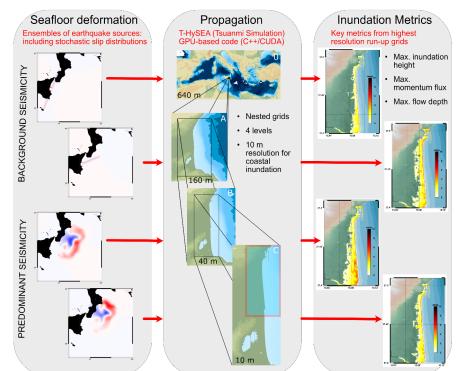
Service typologies: tsunamı early warnıng system

Codes Tsunami-HySEA	
Lead partner(s)	INGV (L), UMA, NGI
TRL initial	3
TRL target	6-8


- Provide rapid tsunami impact probability distribution along the coasts
- Combines data on seismic parameters with large
 ensembles of FTRT tsunami simulations
- Prototype Implementation of the PTF workflow for the Mediterranean Sea, e.g. ARISTOTLE ENHSP (European Natural Hazard Scientific Partnership)

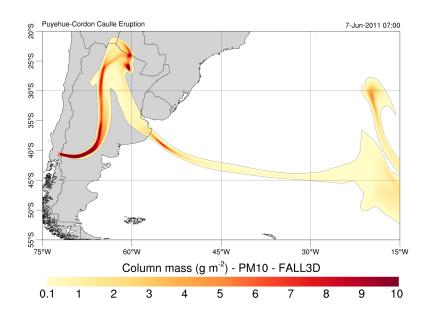
Service typologies: probabilistic hazard assessment I. Physics-based PSHA

Codes SeisSol, ExaHyPE, AWP-ODC(*)	
Lead partner(s)	LMU, TUM, IMO, INGV, BSC
TRL initial	4
TRL target	6-7


- Enable physics-based PSHA with state-of-the-art multi-physics earthquake simulation
- Target e-science environments: EPOS, USGS
 Science Applications for Risk Reduction (SAFRR),
 Nuclear Power Plants, insurance companies, etc.
- Test cases
 - o Northern Iceland (Tjörnes Fracture Zone; TFZ)
 - o Southern Iceland Seismic Zone

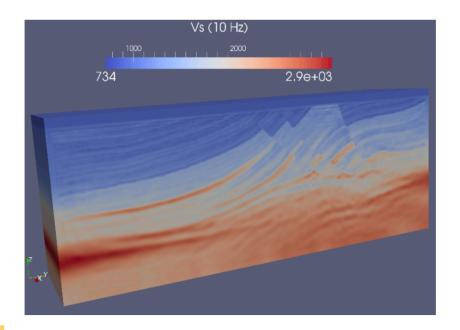
Service typologies: probabilistic hazard assessment II. Tsunamis (PTHA)

Codes	T-HySEA and L-HySEA
Lead partner(s)	NGI (L); INGV, UMA
TRL initial	3
TRL target	5-7


- Enable fast computation of tsunami-genesis covering uncertainty quantification
- Telescopic grids to combine regional tsunami simulations at oceanic scale with local inundation simulations
- Test case:
 - o West Sicily

Service typologies: probabilistic hazard assessment III. Volcanoes (PVHA)

Codes	FALL3D, ASHEE
Lead partner(s)	INGV (L); BSC, IMO
TRL initial	3
TRL target	6-7


- Short-term and long-term PVHA
- Explore the natural variability associated to meteorological conditions and volcanic phenomena
- Proximal and distal tephra fallout and airborne ash concentration
- Test cases:
 - o Campi Flegrei
 - o Jan Mayen

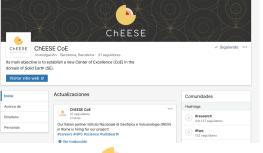
Service typologies: seismic tomography

Codes	SPECFEM3D, Salvus
Lead partner(s)	INGV (L); CNRS, ETH
TRL initial	4
TRL target	6

- HPC workflow for subsurface imaging: from selection of data to visco-elastic FWI computation and post-processing of results
- Up to 15 Hz
- Test cases
 - o Japan
 - o Pyrenees
 - o North Sea

A wide board of users and Industry

Future service integration



Want to know more?

