

Decadal variations in retrieved aerosol optical depth (AOD) from sunshine duration (SD) meausurements over Europe since the late 19^{th} century

$$AOD = f(SD)$$
?

W. Wandji¹, A. Lipponen¹, E. J. M. van den Besselaar², A. Sanchez-Lorenzo³, M. Wild⁴ and A. Arola¹

¹Finnish Meteorological Institute, Kuopio, Finland ²Royal Netherlands Meteorological Institute, De Bilt, Netherlands ³Department of Physics, University of Extremadura, Badajoz, Spain ⁴ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland

Why reconstructing the aerosol load in the past?

Aerosol load (AOD) => surface solar radiation => climate change with variability in *space and time*

Why reconstructing the aerosol load in the past?

- The present day anthropogenic aerosol forcing ranges between
 –0.1 W/m2 and –1.9 W/m2, (IPCC, 2013)
- Stevens (2015) reduced the uncertainty over the Northern Hemisphere, it ranges between -0.3 W/m2 and -1.0 W/m2
- based solely on SO2 emissions
 vs AOD comprises black carbon and organic aerosols
- constantly increasing of aerosol load before 1980 vs opposite findings of decreasing aerosol load before 1950

Why sunshine duration measurements?

Why sunshine duration measurements?

- Sunshine duration (SD) for a given period, mostly a day, is defined as the sum of the sub-periods for which broadband direct normal irradiance (DNI) is greater than the threshold value (or *burning threshold*) of 120 W m⁻² (WMO, 2008)
- A proxy to infer AOD because an increase of AOD => decrease of direct irradiance => decreasing SD value
- One of the longest time series of meteorological measurements since the late 19th century and with a noticeable spatial coverage over the world.

fully automatic but from 2000 onwards

Campbell-Stokes recorder (CSSR)

Burn card

ECA&D database

• => ground-based stations having both SD and CC measurements with a maximum distance of 50 km

AOD trend maps: winter season (p-value<=0.05 & #data >=50%)

AOD trend maps: spring season (p-value<=0.05 & #data >=50%)

AOD trend maps: summer season (p-value<=0.05 & #data >=50%)

AOD trend maps: autumn season (p-value<=0.05 & #data >=50%)

A bonus: annual AOD anomalies for Alice Springs (Australia)

Conclusions and perspectives

- The new hybrid method for reconstructing the past AOD from SD measurements is applied
- Compatible with volcanic eruptions, early brightening, dimming and brightening phenomenon over time. Preliminary evidence of early-dimming at couples of stations.
- Opposite trends between Eastern and Western EU countries depending on the time period
- Further investigations should be done to explain discrepancies on the AOD time series
- Extension of the study as many sites as possible in other regions of the world such as Africa, America (North & South), Australia and Asia.

PLEASE, WE NEED DATA and WE OFFER A CO-AUTHORSHIP (contact me to william.wandji@fmi.fi)

Comparing results with other findings from the literature

Thanks...

22.4.2020