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Outline

• We present a finite volume method (FVM) for the general Poisson 
problem with the Dirichlet and oblique derivative boundary condition

• We present local gravity field modelling in Slovakia based on the FVM 
approach considered on unstructured meshes above the real Earth’s 
topography



1. Mathematical formulation

• nonlinear satellite fixed geodetic boundary 
value problem 

−Δ𝑇 𝒙 = 0, 𝒙 ∈ Ω,
∇𝑇 𝒙 ⋅ 𝑽 𝒙 = 𝑔 𝒙 , 𝒙 ∈ Γ,

𝑇𝑆𝐴𝑇 𝒙 = 0, 𝒙 ∈ 𝜕Ω\Γ,

• where 𝑽 𝒙 = 𝒏 𝒙 +𝑾(𝒙)

• 𝑇 - unknown disturbed potential

• 𝑽 𝒙 =
∇𝑈(𝒙)

|∇𝑈 𝒙 |
, where 𝑈 is normal potential

• 𝑔 𝒙 - gravity disturbances
Fig. 1: 2D illustration of a 3D 
computational domain Ω



2. Generic Finite Volume method (FVM)

• Divide the computational domain Ω into the set of finite volumes 𝑝
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• Where ∇𝑇 ⋅ 𝒏𝑝,𝜎 +𝑾 = ∇𝑇 ⋅ 𝑽 = 𝑔

• Where inner fluxes are approximated by some FV scheme ℱ𝑝,𝜎
Ω 𝑇 ≈

𝜎׭ ∇𝑇 ⋅ 𝒏𝑝,𝜎

∗ = − ෍

𝜎∈𝔖 𝑝 \𝔖Γ

ℱ𝑝,𝜎
Ω 𝑇 − ෍

𝜎∈𝔖 𝑝 ⋂𝔖Γ

ඵ

𝜎

g − ∇𝑇 ⋅ 𝑾

Fig. 2: 2D illustration of a 3D 
FVM discretization of Ω



2. Generic Finite Volume method (FVM)
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• Choice of central scheme
• Approximate 𝑇 on the edge 𝑒 by constant 𝑇𝑒
• Approximate 𝑇 on the face 𝜎 by constant 𝑇𝜎
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2. Generic Finite Volume method (FVM)

• From a numerical analysis [1] we add a small amount of boundary 
diffusion for a stability purposes

• Resulting scheme
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Fig. 2: 2D illustration of a 3D 
FVM discretization of Ω



3. Choice of fluxes discretization

• Chose some finite volume approximation of inner volume fluxes ℱ𝑝,𝜎
Ω 𝑇

• Chose some finite volume approximation of boundary fluxes ℱ𝑝,𝜎
Ω 𝑇

• For our choices see [1]
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4. Numerical results for local gravity field 
modelling in the area of Slovakia

Fig. 3: Topography in the area of Slovakia

Boundaries Resolution #points

Latitude direction 16.5° - 23° 0.002° (200 m) 3251

Longitude direction 47.5° - 49.7° 0.002° (200 m) 1101

Radial direction Topography – 230 km 250 m – 1 km 127



4. Numerical results for local gravity field 
modelling in the area of Slovakia
Boundary conditions:

• Bottom boundary condition (the gravity disturbances ) generated 
• inside Slovakia using the CBA2G software [2]

• Outside Slovakia interpolated from the GGMPlus database [3]

• Upper boundary condition (disturbing potential) generated from the 
GO_CONS_GCF_2_DIR_R5 geopotential model up to d/o 300 [4]

• Side boundaries condition (disturbing potential) generated from the 
EIGEN-6C4 geopotential model up to d/o 2160 [5]



4. Numerical results for local gravity field 
modelling in the area of Slovakia

Fig. 5: Local quasigeoid model in the area of Slovakia obtained from the FVM solution 



4. Numerical results for local gravity field 
modelling in the area of Slovakia

Fig. 6: GNSS/levelling test of the local quasigeoid
model in Slovakia at 404 benchmarks

Characteristic For all points Without outliers

Number of points 404 395

Minimum 0.131 m 0.147 m

Maximum 0.352 m 0.352 m

Range 0.221 m 0.205 m

Mean 0.231 m 0.231 m

Median 0.230 m 0.230 m

Standard deviation 0.028 m 0.026 m

Statistics of the GNSS/Levelling test:
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