Contribution of the triple oxygen isotope composition of precipitation to the identification of surface-atmosphere interactions in the sub-humid part of West Africa

VALLET-COULOMB, C.¹, ALEXANDRE A.¹, PEUGEOT C.², ALASSANE A.³, GBEWEZOUN V.³, COUAPEL M.¹, OUTREQUIN C.¹, OUANI T.⁴, AFOUDA S.⁴

¹Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix en Provence, France.

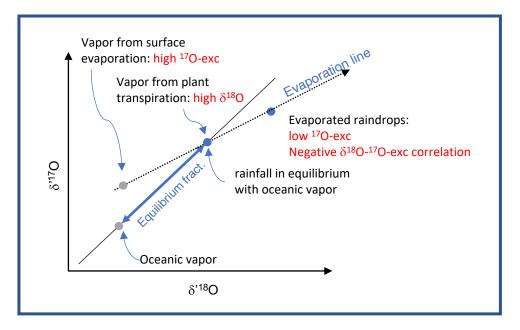
² Hydrosciences Montpellier, IRD, CNRS, Univ. Montpellier, Montpellier, France

³Laboratoire d'Hydrologie Appliquée, Institut National de l'Eau, Université d'Abomey-Calavi, Bénin

⁴ IRD Bénin, 08 BP841 Cotonou, Bénin

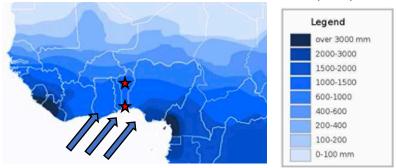
This work is part of the **HUMI-17** – ANR project

Rationale



- In West Africa, the Sudan Climate Zone (1200-1400 mm/year) plays a crucial role in regional water resource
- Surface-atmosphere interactions influence convective processes
 - Positive feedbacks between vegetation and rainfall evidenced in Sahel
 - What about the Sudan Climate Zone?
- Isotope tracers record the contribution of evapotranspirated moisture to precipitation

Rainfall and the triple oxygen isotope system


¹⁷O-exc in precipitation reflects successive evaporation processes:

- Vapor formation over the ocean: ¹⁷O-exc increase
- Raindrop evaporation in the atmosphere: ¹⁷O-exc decrease
 - \rightarrow Negative correlation between ¹⁷O-exc and δ^{18} O
- Contribution of continental vapor to precipitation: 17 O-exc increase \rightarrow high 17 O-exc and high δ^{18} O

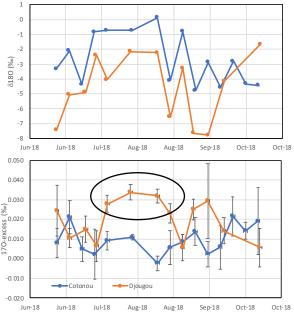
Data acquisition

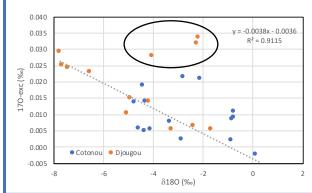
Annual precipitation

Monsoon carries similar oceanic moisture sources

Sampling

- Inland station: Djougou (AMMA-Catch site):
 ≈ 3 samples/week since April 2018
- Coastal station: Cotonou (Université Abomey Calavi)
 - ≈ 1 sample/week since June 2018


Analyses


- WS-CRDS Picarro L2140-i, 3 replicates per sample
- Long-term precision, defined as the SD of a QC sample over 17-months of routine measurement:

	δ^{18} O	$\delta^2 H$	¹⁷ O-exc
Long-term precision (‰)	0.03	0.19	0.008

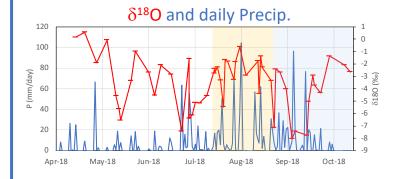
Results #1: comparison between the two locations

Weighted averages 2018 (%)	δ^{18} O	$\delta^2 H$	¹⁷ O-exc	d-exc
Coastal station	-3.41	-14.91	0.014	12.40
Inland station	-4.21	-22.35	0.023	11.31

Weekly times series during the common period

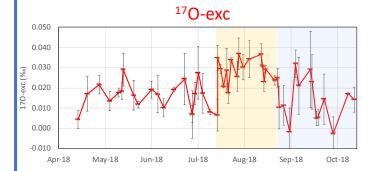
δ^{18} O

- Similar seasonal variations
- Lower δ^{18} O at the inland station
 - → continental effect (Rayleigh)


δ^{17} O-exc

- Positive ¹⁷O-excess anomaly at the inland station (July 17th- Aug 19th)
 - → Contribution of moisture produced by surface evaporation

Relation $^{17}\text{O-exc}$ - $\delta^{18}\text{O}$ during the common period


- Negative correlation at the inland station, except July 17th-Aug. 19th
 - → raindrop evaporation in the atmosphere
- No clear relation at the coastal station

Results #2: seasonal evolution of the monsoon at the inland station

Heart of the monsoon (Jul 17th – Aug 19th)

- high 17 O-exc and δ^{18} O
- Wind direction suggests longer continental trajectories
- Maximum rainfall (cumul and intensities)

- low $\delta^{18}\text{O}$ compositions points to deeper convective activity
- Negative correlation between $^{17}\text{O-exc}$ and $\delta^{18}\text{O}$ (r² = 0.54)
- Wind turns to South-East
- Decreasing rainfall intensity

wind direction and 10-day Precip.

Conclusions and perspectives

 $$^{17}\text{O-exc}\ \textit{vs}\ \delta^{18}\text{O}$$ a tracer of surface – atmosphere interactions

- Shows that evapotranspiration moisture may contribute to rainfall in a sub-humid Sudan Climate area
- Need to include water recycling in regional water balance studies

 $^{17}\text{O-exc}\ \textit{vs}\ \delta^{18}\text{O}$ a tracer of raindrop evaporation

- Raindrop evaporation associated to deep convection and low $\delta^{18}{\rm O}$
- Input for understanding convective processes