

How land management and water availability control ecosystem-atmosphere carbon exchange in the Karoo, South Africa

Rybchak, O.¹, Mukwashi, K.¹, du Toit, J.², Feig, G.^{3, 4}, Bieri, M.¹, Brümmer, C.¹

¹Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany ³South African Environmental Observation Network, Colbyn, Pretoria, South Africa

²Grootfontein Agriculture Development Institute, Middelburg, Eastern Cape, South Africa ⁴Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa

Background

>Climatic and land management factors, such as water availability

and grazing intensity, play a a dominant role in influencing primary production carbon fluxes

>However, not many studies have focused on the direct measurements of the land surface-atmosphere exchange

Objectives

climatic (precipitation) and impacts of anthropogenic (livestock grazing) drivers on semi-arid Karoo ecosystem-atmosphere exchange of carbon fluxes, latent and sensible energy

- inter-annual variability of carbon exchange across the different grazing intensities
- impacts of water availability and land management on the carbon fluxes

Conclusions

- the past' but now rested site >'Overgrazed sequestered more CO2 than site with the controlled grazing
- Controlled grazed site is a net CO, source after 4 years, whereas the rested site is likely to be CO, neutral site
- > Long resting period may improve carbon sequestration

>Livestock farming is considered as the main land management practice

- ➤ Long-term mean annual rainfall (1889 -2013) of 373 mm [1]
- >Topography is generally flat and soils are shallow and weakly developed [2]

Figure 1. Half-hourly time

(SWC)

Materials and Methods

➤ Controlled grazing (cycle – 2 weeks grazing. approx. 24-26 weeks resting)

> Overgrazed in the past (density is 4 times higher than at the controlled grazing site), rested from 2007 till 2017

series and corresponding Precipitation (P)).

- ➤ Small CO₂ source during the dry season and carbon sink during the growing season
- > Carbon uptake strongly correlated with water availability
- > Depending on water availability sites may become CO2 sources or keeping their neutral status

Results

$NEE = R_{eco} - GPP$

- The ecosystem is physiologically active and turning $\frac{1}{200}$ to the 'carbon sink' when GPP is higher than Reco
- Third year was the most productive year (2018)

Respiration

>'Overgrazed in the past' site has increased carbon sequestration compared to the 'controlled grazing' site

