"건강한 환경 행복한 미래 "

To what extent can the synoptic weather system explain high–PM2.5 episodes in the metropolitan area?

Limseok Chang¹, Hancheol Im², Hyunkee Hong¹, Yonghee, Lee¹, Chang-Hoi Ho³, Jinwon Kim², Greem Lee³ ¹National Institute of Environmental Research, ²National Institute of Meteorological Sciences, ³School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea

Long-term trend of PM in Seoul

Year

PM _{2.5}		2016	2017	2018 (Jan.~Sep.)
Annual mean for $PM_{2.5}$ (μ g/m ^{\circ})		26	25	23
Violation days	> 35µg/m³ (after 2018.3.27)	45	48	41
	> 50µg/m³ (before 2018. 3.27)	8	8	12

Synoptic weather patterns relevant for high-PM_{2.5} episodes

Southern high pressure

Anticyclone whose center is located in East Sea, Jeju, or Japan -with the ridge extending toward the Korean Peninsula

Travelling high pressure

travelling anticyclone off Siberian high moving southwest from China (Northern China–Shandong peninsula) to South Korea through the Yellow sea, or south of Jeju Island

Two meteorological modes extracted by principal component analysis and regression represent the synoptic weather patterns

Two meteorological modes explain 78% of high-PM_{2.5} episodes

The pair of dominant and important modes into five categories: category 1 (C1) is for positive dominant mode dominant, category 2 (C2) for positive important mode dominant, category 3 (C3) for negative dominant mode dominant, and category 4 (C4) for negative important mode dominant, and finally category 5 (C5) if both modes PC4 are statistically not valid (if factor loadings <0.2).