Mit Unterstützung von Bund, Ländern und Europäischer Union

University of Natural Resources and Life Sciences, Vienna

Department for Sustainable Agriculture Systems

Division of Organic Farming

Soil inorganic N contents and maize yield following winter-hardy vs. freeze-killed cover crop mixtures on an organic farm in Eastern Austria

Gollner G., Fohrafellner J., Wohlmuth, M.-L., Friedel J.K.

This project was supported by the Austrian Ministry of Sustainability and Tourism, the programme LE 14-20 and the European Union

EGU2020: Sharing Geoscience Online

Research Question and Objectives

- Multiple positive effects of cover crops, e.g. on: Department for soil protection, soil structure, erosion risk, **Division of Organic Farming** water infiltration, soil organic matter built-up, nitrate leaching, biological nitrogen fixation, weed competition, soil biological activity, nutrient mobilization, yield of following crops
- What are the advantages of a winter-hardy vs. a freeze-killed cover crop (CC) mixture on an organic farm with reduced soil cultivation?
- Test effects on
 - (i) **soil inorganic nitrogen** contents after winter
 - (ii) weed density
 - (iii) yield of a following maize crop

University of Natural Resources and Life Sciences, Vienna

Sustainable Agriculture Systems

Material and Methods

- Two consecutive *field experiments* (FE1 and FE2), randomized complete block design, on an organic farm with mainly non-inverting soil cultivation in Lower Austria
- Site: Orthic Luvisol, silty clay silty loam, pH ≈ 7, 10.5 °C, 760 mm
- Treatments (seeding rate, kg ha⁻¹)
 Winter-hardy CC mixture:
 "Landsberger Gemenge", i.e. hairy vetch (102.5), crimson clover (11.3), Italian ryegrass (11.3);

Termination and soil cultivation in April with a rotary cultivator.

BOKU

University of Natural Resources and Life Sciences, Vienna

Division of Organic Farming

Freeze-killed CC mixture: fodder pea (142.0), common vetch (58.0), chickling vetch (50.0), buckwheat (12.0), phacelia (8.5), fodder radish (8.5);

Soil cultivation in April with a chisel.

Material and Methods

- Following crop: Grain maize, cv "Connexxion", sown in May, harrowed once, hoed twice
- Inorganic soil Nitrogen (Nin) sampling in 0-30, 30-50, 50-90 cm soil depth
- *Weed density* estimated as area-%
- Maize harvest on 6 x 1 m² per plot
- ANOVA with logarithmic data

University of Natural Resources and Life Sciences, Vienna

Department for Sustainable Agriculture Systems

Division of Organic Farming

Results I – Soil Inorganic Nitrogen

 Soil Nin contents in 0-90 cm depth in spring almost doubled after the freeze-killed CC mixture

University of Natural Resources and Life Sciences, Vienna

Department for Sustainable Agriculture Systems

Division of Organic Farming

WCC: winter-hardy cover crop; FCC: Freeze-killed cover crop. Mean values with same letter at the same date do not differ significantly (P < 0.05)

Fig. 1: Soil inorganic N (kg ha⁻¹) in 0-0.9 m after two cover crop mixtures

Results II – CC biomass and C-to-N ratio, weed density

- Dry matter biomass: winter-hardy CC in April (2.79 t ha⁻¹) ≈ freeze-killed CC mixture in November (3.10 t ha⁻¹)
- Both CC mixtures legume-dominated;
 → Narrow C-to-N ratio (10-13) / high N content of CC residues in both treatments
- Weed density in maize crop moderate until June, high (> 30 %) from June to September in both CC treatments;
 Main weeds: Creeping thistle, chickweed, red dead-nettle, white goosefoot

University of Natural Resources and Life Sciences, Vienna

Department for Sustainable Agriculture Systems

Division of Organic Farming

Results III – Maize yield

Table 1: Maize grain dry matter yield (Maize DM) and maize N yield (Maize N yield) in both field experiments;

Significance of treatment effects (*Trtm*), *Year* and *Trtm*Year*.

Treatment	Experi-	Maize DM		Maize N yield		
	ment	Mean	± SD	Mean	± SD	
		(t ha ⁻¹)		(kg ha ⁻¹)		
Winter-hardy	FE1	7.29 a	1.26	91.9 a	13.8	
CC,	FE2	7.32 α	1.94	100.4 α	26.5	
Rotary cultivator	Av.	7.31 A	1.57	96.1 A	18.9	
Freeze-killed	FE1	8.33 a	1.63	101.9 a	20.4	
CC,	FE2	6.58 α	2.99	92.4 α	49.4	
Chisel	Av.	7.46 A	1.52	97.2 A	21.8	
Trtm		0.887		0.951	© Authors. All rights reserved	
Year		0.420		0.975		
Trtm*Year		0.405		0.566	.	

University of Natural Resources and Life Sciences, Vienna

Division of Organic Farming

 Maize dry matter yield and maize nitrogen yield:

No sign. difference between treatments

FE1: Field experiment 1; FE2: Field experiment 2. SD: Standard deviation. Av.: average; Values with the same (lowercase / Greek / capital) letter in one column are not significantly different (P < 0.05).

Conclusions

- Soil inorganic nitrogen content significantly reduced by the winter-hardy CC mixture.
 → Reduced nitrate leaching risk
- Similar weed density in both treatments, i.e.
 combinations of CC mixture and soil cultivation.
 Re-growth of terminated winter-hardy CCs no problem due to intense cultivation with a rotary cultivator.
 High thistle density and competition due to continued non-inversion tillage.
- Similar maize grain DM yield and maize nitrogen yield in both treatments.
- Presumably swift N mineralization in both treatments from CC residues with high N content.
 Timing of CC termination obviously less important than C-to-N ratio of CC residues.

University of Natural Resources and Life Sciences, Vienna

Department for Sustainable Agriculture Systems

Division of Organic Farming