

STATISTICAL STUDY OF FORESHOCK TRANSIENTS IN A GLOBAL HYBRID-VLASOV MAGNETOSPHERIC SIMULATION

<u>V. Tarvus</u>1

- L. Turc¹, M. Battarbee¹, X. Blanco-Cano², P. Kajdič²,
- J. Suni¹, M. Alho¹, M. Dubart¹, U. Ganse¹, M. Grandin¹,
- A. Johlander¹, Y. Pfau-Kempf¹, K. Papadakis¹, M. Palmroth^{1,3}

¹Department of physics, University of Helsinki, Helsinki, Finland ² Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico ³Finnish Meteorological Institute, Helsinki, Finland

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

CAVITONS ARE EXAMPLES OF FORESHOCK TRANSIENTS

- Upstream of Earth's bow shock lies the foreshock, where bow shock-reflected particles interact with the solar wind and generate Ultra Low Frequency (ULF) waves
- Non-linear evolution of ULF waves can lead to the formation of cavitons, characterized as localized depressions of plasma density and magnetic field
- Observed sizes order of $1 R_{E}^{2}$

Example of a caviton observed by the Cluster spacecraft, from *Blanco-Cano et al.*, (2011)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

CAVITONS PROPAGATE AND EVOLVE IN THE FORESHOCK

- Cavitons are convected to the bow shock, and they can fill up with backstreaming suprathermal ions, transforming them into Spontaneous Hot Flow Anomalies (SHFAs)
- SHFAs are associated with high temperature, deflected bulk flow and further density and magnetic depletions
- At the bow shock, SHFAs can form magnetosheath cavities [Blanco-Cano et al., 2018]

Example of an SHFA observed by the THEMIS spacecraft, from *Zhang et al.*, (2013)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

CONDUCTING STATISTICAL STUDY OF CAVITONS AND SHFAS

- Statistical studies of cavitons [Kajdič et al., 2013] and SHFAs [Kajdič et al., 2017] with the Cluster spacecraft found that the transients can be observed under a wide range of solar wind conditions
- Density and magnetic depressions well-correlated inside cavitons, deep but weaker correlation inside SHFAs
- Using Vlasiator, we conduct the first comprehensive computational statistical study of the transients, providing us with the largest sample to date

density and magnetic field depressions, from *Kajdič et al.*, (2017)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- A hybrid-Vlasov code for performing global magnetospheric simulations [*Palmroth et al.,* 2018]
- Ions modelled as velocity distribution functions evolving according to Vlasov's equation, with cold electrons as a charge-neutralizing fluid
- Up-to-date runs mostly 2D in ordinary space with 3D velocity space
- https://www.helsinki.fi/en/researchgroups/vlasia tor

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

IDENTIFYING TRANSIENTS IN VLASIATOR

- We study cavitons and SHFAs in a single Vlasiator run in the GSE X-Z plane
 - $n_{sw} = 1 \text{ cm}^{-3}$, $B_{sw} = 5 \text{ nT}$ at a 45° cone angle, $T_{sw} = 0.5 \text{ MK}$
 - $V_{sw} = (-750,0,0) \text{ km/s}, M_{A} = 6.9, M_{MS} = 5.6$
- Cavitons consist of cells where n < 0.8n_{sw}, B < 0.8B_{sw}
- SHFAs are a subset of cavitons, with a requirement of $\beta > 10$ in at least 60% of the transient cells

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Cavitons and SHFAs in the foreshock

Statistical study of foreshock transients in a global hybrid-Vlasov magnetospheric simulation / Vertti Tarvus

6

30.04.2020

WE TRACK INDIVIDUAL TRANSIENTS

- During a 537.5 s interval, we find 1445 individual transients evolving in time
- Tracking them allows us to study their formation, propagation and evolution in addition to their physical properties
- We find that ~25% of tracked transients are cavitons that evolve into SHFAs, ~50% are purely cavitons and ~25% are purely SHFAs

Cavitons and SHFAs in the foreshock

Statistical study of foreshock transients in a global hybrid-Vlasov magnetospheric simulation / Vertti Tarvus

7

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- For each tracked transient, we record the extrema of physical properties over transient lifetime
- We find that the caviton properties are peaked near their respective solar wind values, with low amounts of suprathermal ions
- SHFAs have large suprathermal densities, high temperatures and significantly decreased bulk flow speeds
- The depths and sizes of the transients appear small compared to observations

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Statistical study of foreshock transients in a global hybrid-Vlasov magnetospheric simulation / Vertti Tarvus

CORRELATIONS BETWEEN PHYSICAL PROPERTIES

- In agreement with observations, density and magnetic field strength are well correlated inside cavitons
- Weaker correlation inside SHFAs, due to the increased amount of suprathermal ions
- The presence of suprathermals increases the temperature and reduces the bulk flow speed inside SHFAs

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Statistical study of foreshock transients in a global hybrid-Vlasov magnetospheric simulation / Vertti Tarvus

q

TRANSIENT FORMATION AND EVOLUTION

- Caviton formation is found to take place mainly within ~10 R_E from the bow shock (as measured along the IMF)
- SHFAs are found within ~3.5 $\rm R_{\rm E}$ from the bow shock
- In this region, formation of both cavitons and SHFAs is abundant and cavitons may evolve into SHFAs

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Tarvus et al., manuscript in preparation

Statistical study of foreshock transients in a global hybrid-Vlasov magnetospheric simulation / Vertti Tarvus

TRANSIENT FORMATION AND EVOLUTION

- In 2D, we plot the bow shock-distance against the angle from the GSE X-axis ("nose angle")
- The caviton formation region widens with increasing distance from the bow shock nose
- SHFAs are found within the same bow shockdistance in all parts of the foreshock

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Statistical study of foreshock transients in a global hybrid-Vlasov magnetospheric simulation / Vertti Tarvus

- Both cavitons and SHFAs propagate at a uniform speed along the Sun-Earth direction
- In the solar wind rest frame, the propagation is sunwards (~144 km/s), in agreement with observations by Kajdič et al., (2011)
- We find that the transients propagate southwards in the out-of-ecliptic direction

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Statistical study of foreshock transients in a global hybrid-Vlasov magnetospheric simulation / Vertti Tarvus

Good agreement is found between the statistical Vlasiator results and spacecraft observations:

- Cavitons have well-correlated density and magnetic field depressions
- The transients' sunward propagation speed in the solar wind rest frame agrees well with observed speeds
- Simulated transients are smaller than those in spacecraft observations, possibly due to limited wave steepening in the simulation [*Pfau-Kempf et al., 2018*], and difficulty of resolving small transients in spacecraft data

- Cavitons form in a well-defined region deep in the foreshock
- Spontaneous Hot Flow Anomalies are found close to the bow shock, the observed heating and bulk flow deflection in their interior corresponds to an increase in suprathermal density
- SHFAs form on their own and evolve from cavitons in roughly equal amounts, but not all cavitons evolve into SHFAs