Aerosol-cloud interaction in 1985 and today

<u>Roland Schrödner</u>, Christa Genz, Bernd Heinold, Holger Baars, Silvia Henning, Nils Madenach, Cintia Carbajal Henken, Montserrat Costa Surós, Odran Sourdeval, Jonas Hesemann, Matthias Brueck, Guido Cioni, Corinna Hoose, Ina Tegen, Johannes Quaas

schroed@tropos.de

Objectives

- Investigate aerosol-cloud-interaction as aerosols are perturbed
- Compare modelled aerosol conditions of the mid 1980's ("peak aerosol" over Europe) to 2013
- Use modelled aerosol to derive CCN number concentration
- Use the derived CCN as input for high-resolution meteorological simulations (ICON-LEM)
- Compare to available observations (HOPE campaigns, AVHRR)

COSMO-MUSCAT

TROPO's Surface properties Input Landuse Lateral boundaries Emissions aerosol & chemistry Driving data **MUSCAT** transport Transport Model model system COSMO Coupling Aerosol dynamics **NWP Model** - Mass-based approach or - ext-M7 aerosol scheme Meteoro-- derive CCN and INP logy 2-Moment cloud Chemistry scheme - Gas phase: RACM-MIM2 - Liquid phase: CAPRAM Aerosol Output was **Radiation scheme** ingested into **Online Emissions** Dust / marine / biogenic / **ICON-LEM** secondary aerosol simulations **ICON-LEM 4-D Output fields**

Model setup

- Nested Germany domain (resolution 7x7 km²)
- Simulation period: 2013/03/26 06/16
 - 1985 scenario using the same meteorology
- 1985 emissions estimated using scaled 2009 emission inventory
- Overall annual emissions over Germany for 1985 from UBA
- CCN derived according to Abdul-Razzak and Ghan (2000)

	1985	2013	ratio 1985/2013
dust (incl. soot)	2.65	0.35	7.7
SO_2	7.73	0.41	19
$\rm NH_3$	0.86	0.74	1.2

Emissions over Germany in Mt a⁻¹

Genz et al., ACPD, in review

Result: Aerosol 1985 vs 2013 (3-month domain mean)

Result: CCN 1985 vs 2013 (3-month domain mean)

Assuming the same aerosol size distributions as in 2013, the average CCN number in 1985 in the boundary layer is a factor of ~2-3 higher than in 2013.

Comparison to observations (AOD: AVHRR, Northern Germany)

AOD compares well to observations in both periods, in particular the modelled reduction since 1985 Over- and underestimations are difficult to interpret because of observation uncertainty, especially for small AOD, and scarceness of observational data set, and same meteo scenario for both cases in the model

 (\mathbf{i})

(cc)

Comparison to observations (CCNc @Melpitz, Germany)

N_CCN_{chem}: applying activation parameterization to chemical aerosol mass measurements

Comparison to observations (CCNc @Melpitz, Germany)

N_CCN_{chem}: applying activation parameterization to chemical aerosol mass measurements

Comparison to observations (CCN: LIDAR @Melpitz, Germany)

- Modeled CCN concentrations of 2013scenario are in the range of observations (overlap of 25-75% percentile)
- Mean overestimation is factor of ~2.
- Modeled CCN
 concentration of 1985
 strongly exceeds today's
 CCN concentrations

Summary

- Aerosol composition and CCN concentration in mid 1980's over Europe was simulated with COSMO-MUSCAT and compared to 2013
- In boundary layer: aerosol mass ~5 times and CCN ~2-3 higher in1980's compared to 2013
- Comparison to available observations in both time periods (AOD) reveals reasonable agreement
- Today's CCN concentrations by up to factor of 2 underestimated
- Overall, a size resolved treatment of aerosols is promising to prove the findings of this work

Costa-Surós, M., Sourdeval, O., Acquistapace, C., Baars, H., Carbajal Henken, C., Genz, C., Hesemann, J., Jimenez, C., König, M., Kretzschmar, J., Madenach, N., Meyer, C. I., Schrödner, R., Seifert, P., Senf, F., Brueck, M., Cioni, G., Engels, J. F., Fieg, K., Gorges, K., Heinze, R., Siligam, P. K., Burkhardt, U., Crewell, S., Hoose, C., Seifert, A., Tegen, I., and Quaas, J.: Detection and attribution of aerosol-cloud interactions in large-domain large-eddy simulations with ICON, Atmos. Chem. Phys., https://doi.org/10.5194/acp-2019-850, 2020.

Genz, C., Schrödner, R., Heinold, B., Henning, S., Baars, H., Spindler, G., and Tegen, I.: Estimation of Cloud Condensation Nuclei number concentrations and comparison to in-situ and lidar observations during the HOPE experiments, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-742, in review, 2019.