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• Map integrated precipitable water vapour and tracking 
convective storm systems – improve forecast in Africa 

• Provide Calibrated high grade maps and time series of soil 
moisture, surface energy fluxes, and floods 

• Produce accurate maps of land cover, land use and crop status 

The TWIGA project 

• Transforming Weather Water data into value-added Information 
services for sustainable Growth in Africa 

• Developing market oriented services 

• Value addition 
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Soil Moisture Modeling 

• Combination of SAR and optical data 

• Couple of Oh and Water Cloud Models (𝑓) 
𝝈𝑽𝑽, 𝝈𝑯𝑽 = 𝑓 𝜽,𝑵𝑫𝑽𝑰, 𝒂, 𝒃, 𝒌𝒔,𝑴  

• Observations 
• 𝝈𝑽𝑽, 𝝈𝑯𝑽:   Radar backscatter coefficients 
• 𝜽:   Incidence angle 
• NDVI:   Normalized Difference Vegetation Index (

𝜌𝑁𝐼𝑅−𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑟𝑒𝑑
)  

• Empirical parameters 
• a:   Vegetation’s radar albedo 
• b:   Vegetation’s radar attenuation 
• ks:  Soil roughness 

• Parameter to be estimated 
• M:   Surface soil moisture 
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Calibration with In-Situ Data 

• In-situ soil moisture at 10 cm 
depth 
• four stations in Ghana, every 30 

minutes, May – Oct. 2019 

• Hierarchical Bayesian regression 

• Posterior distributions for each 
Land Cover (ESA-CCI-LCv1) type 
(with an in-situ station) 

𝝈𝑽𝑽, 𝝈𝑯𝑽 = 𝑓 𝜽,𝑵𝑫𝑽𝑰, 𝒂, 𝒃, 𝒌𝒔,𝑴  
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Mapping Algorithm 

• 𝑴 =
𝑚 𝝈𝑽𝑽, 𝝈𝑯𝑽, 𝜽, 𝑵𝑫𝑽𝑰, 𝒂, 𝒃, 𝒌𝒔  

• Neural Network  
• Synthetical dataset (with f) 

 

 

 

 

• Calibration  
• r2 = 0.890 

• RMSE = 0.042 m3/m3 
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𝑴 𝝈𝑽𝑽 𝝈𝑯𝑽 𝜽 𝑵𝑫𝑽𝑰 𝒂 𝒃 𝒌𝒔 

0.289 0.767 0.386 40.748 0.060 0.361 0.092 3.867 

0.067 0.446 0.281 34.673 0.024 0.303 0.061 3.583 

... ... ... ... ... ... ... ... 
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Time series of 
soil moisture 
maps 
• 80km x 80km in 

Ghana 
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Validation 

• Estimation 
Observation 

• Leave-One-Out 
Cross validation 
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Validation 

• High accuracy 
for specific 
time periods 

• Sudden 
change in 
bias  

• Systematic 
bias 
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High accuracy for specific time periods 
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r2 = 0.402; RMSE = 0.042 
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Possible causes of the sudden change in bias  

• Change in the 
vegetation? (NDVI 
increases ~3 weeks 
after the bias change) 

• Change in the soil 
roughness 

Maize TA00617 
results from a Bayesian inversion 

TWIGA project 
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Possible causes of the sudden change in bias  

• Small size of fields 
and forest nearby 

• For Coffe TA00619 
and Coffe TA00620 

 

50m 
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Conclusions 

• Good accuracy of soil moisture estimates for homogeneous areas 

• Sudden changes of accuracy, due to unmodelled changes in 
• Vegetation? 

• Land surface roughness? 

• Systematic bias, due to 
• Landscape heterogeneity 

• Further work needed 
• Increase calibration sample (e.g. with TAHMO stations)  

• Compare with other soil moisture products 

 



Thank you! 
 
For any question, please do not hesitate to ask in 
the chat 


