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Landslide Risk to the popunlsaion

Definition

Individual Risk is the risk posed by a
hazard to any identified individual
and is generally expressed as
mortality (or death) rates.

Societal (or collective) risk is the
risk imposed by a landslide on
society as a whole.

Fell & Hartford (1997) ISBN:9054109149 ; Guzzetti et al. (2005) doi:10.1007/500267-003-0257-1
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Individual Risk is the risk posed by a hazard to any identified individual and is
generally expressed as mortality (or death) rates.

(Mortality is the number of deaths per 100,000 of any given population over
a pre-defined period, usually one year)

Societal (or collective) risk is the risk imposed by a landslide on society as a
whole.



Societal landslide risk

Definition
Societal risk could be determined analyzing the frequency of past
harmful landslide events and frequency-magnitude (f-M) curves.

Frequency-magnitude relationships can be modelled exploiting
different probability/frequency distribution models.

Databases/Catalogues of landslides with human consequences
provide the basic information for modelling.
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Societal risk could be determined analyzing the frequency of past harmful
landslide events and frequency-magnitude (f-M) curves.

Frequency-magnitude relationships can be modelled exploiting different
probability/frequency distribution models.

Databases/Catalogues of landslides with human consequences provide the
basic information for modelling.
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Fatal Landslides R

B Death circumstances.

Landslide impact on the population in Italy %W
CNR IRPI collected information on the Ewn "
fatal landslide (and also flood) events in g 10: L
Italy. For every events, the catalogue E - __-___::_—'1- e
reports: 1871 1891 1911 1931 1951 1971 1991 2011
B Location and timing of landslide; ®) . 1000 - 1860, £,
M Landslide type; Eqp - ]
B Natural or anthropic trigger (e.g. 8 L
rainfall, earthquake, dam break, ...) '§;’°° S
B Number of fatalities and, when % 10 ’ - {
know, of injured people; 8 : . o

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

2020
Vienna,

CNR IRPI collected data on such fatal landslide events in Italy, compiling a
detailed catalogue extended for more that 1000 years and reporting
information on

Location and timing of landslide;

Landslide type;

Natural or anthropic trigger (e.g. rainfall, earthquake, dam break, ...)
Number of fatalities and, when know, of injured people;

Death circumstances.

In particular, the plots show the distribution of landslide fatalities per event
in time.

Guzzetti (2000) doi:10.1016/50013-7952(00)00047-8; Salvati et al. (2010) doi:10.5194/nhess-10-465-2010 5



Fatal Landslide Distribution

Distribution of fatal landslide in ltaly
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The figure shows the distribution of the fatal landslide events for three
period respectively from 1000 to 1860 (the oldest and less complete portion
of the catalogue listing 137 landslide with at least 9005 fatalities), from 1861-
2015 (used in this study listing 1026 landslide with 5876 fatalities) and from
2016-2018 (the most recent period used to verify our modelling results
listing 11 landslides causing 13 fatalities.

As we see in the figure those data are sparse but are well distributed over the
Italian reliefs.



Distribution Models

Different types of distributions for frequency-Magnitude analysis
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Different types of distribution can be used for modelling societal landslide
risk. Here we show 3 type of distributions the Pareto, the Zeta and the Zipf
distribution that can be used for modelling the probability/frequency of
landslide events which were found to show a power low behavior (i.e. a
linear probability/magnitude relation in log-log scale). The plots on the right
show an application of the 3 distribution to model the probability of
landslides in Emilia Romagna. Among them, the best model was the Zipf
distribution, which is defined for discrete variable with a maximum value.



Model Parameters Estimatign

Statistical methods used to estimate model parameters

Once a distribution model is selected, different estimation methods
can be used to estimate the model parameters:

B HDE: Histogram Density Estimation
(semi-parametric, requiring a certain degree of subjectivity)

B KDE: Kernel Density Estimation
(semi-parametric, requiring a certain degree of subjectivity)

B MLE: Maximum Likelihood Estimation
(fully-parametric, used in this study)

Rossiet al. (2010) doi:10.1002/esp.1858 §
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Once a distribution model is selected, different estimation methods can be
used to estimate the model parameters:

*  HDE: Histogram Density Estimation (semi-parametric, requiring a certain
degree of subjectivity)

*  KDE: Kernel Density Estimation (semi-parametric, requiring a certain
degree of subjectivity)

*  MLE: Maximum Likelihood Estimation (fully-parametric, used in this
study)



Model Verification

Statistical methods used to estimate model parameters
Distribution model verification included:

M the bootstrapped parameter uncertainty estimation, for the
statistical comparison of the estimated probability distributions;

M the bootstrapped Kolmogorov-Smirnov test (KS test) execution to
serve as a “goodness of fit” test providing a measure of the suitability
of the different distribution types.

Results revealed that the Zipf distribution was the most appropriate

Rossiet al. (2010) doi:10.1002/esp.1858 §
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Distribution model verification included:

the bootstrapped parameter uncertainty estimation, for the statistical
comparison of the estimated probability distributions;

the bootstrapped Kolmogorov—Smirnov test (KS test) execution to serve as a
“soodness of fit” test providing a measure of the suitability of the different
distribution types.

Results revealed that the Zipf distribution was the most appropriate.



Zipf Model Interpretation

Interpretation of Zipf model applied to landslide fatalities
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The Zipf model is appropriate to describe the distribution of the number of
landslide fatalities in an event, which is commonly used to quantify the
societal landslide risk in an area.

In the model equation f € {1, 2, ..., F} is the number of the fatalities caused
by a landslide i.e., the magnitude of the fatal event, F is the largest number of
fatalities caused by a single fatal landslide in the empirical record, and s € R+
is the scaling exponent of the Zipf distribution model that measures the
proportion of small versus large magnitude fatal events in the record.

Both the PMF (PDF) and the FMF (FDF) provide useful information for
guantitative risk evaluations.



Zipf Model Derivatives
Different derivatives of the Zipf distribution model usable for societal landslide risk analysis
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Different derivatives of the Zipf distribution model can be derived using the 3
model parameters, which can be used for societal landslide risk analysis

10



Zipf Model Landslide Fatalities_"lu'n Italy

Distribution of landslide fatalities on the entire Italian territory
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The first application of the Zipf distribution to model the landslide societal
risk was done selecting all the fatal landslide events causing fatalities in the
catalogue. Results shown in the figures are expressed in term of Probability
Mass Function (the word mass here is a substitute of density and underline
that we are dealing with a discrete variable) and in terms of Frequency Mass
Function. On the right axis of the FMF plot, there are two additional
secondary axes, the first is reporting the Yearly Frequency that can be
calculated dividing FMF for the length of the period of the catalogue in years,
and the second reporting the return period of FMF that is the reciprocal do
the yearly FMF.

11



Comparison of the PMF and FDF applied to different Natural Hazards in Italy
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Similarly, we have it is also possible to derive the Zipf model for different
natural hazards and compare their levels of societal risk. Here we show the
modelled Probability mass function and the Frequency density of landslide
events with similar densities for floods, earthquakes, and volcanoes. The
societal risk posed by landslides and floods are nearly identical. These events
are more frequent and less severe when compared to the earthquakes that
are less frequent but often they produced large number of fatalities in Italy.

These comparison was possible because for Italy detailed catalogues of the
fatalities due to geophysical hazards such as Earthquakes and Volcanic event
are available, in addition to those developed by CNR IRPI for landslide and
floods.

12



Zipf Model: Physiographic Provinces
Results of the Zipf model obtained for the different physiographic provinces
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Then the questions was: how societal landslide risk varies across the
territory? And how to answer these question having only sparse data?

Our first idea was to use some subdivision of the territory and evaluating the
risk within each subdivision. In a preliminary attempt, we evaluate the risk
within the different physiographic provinces of Italy. Such provinces are
topographic subdivision of Italy proposed by Guzzetti and Reichenbach
(1994) who classified the Italian landscape into eight provinces analyzing four
derivatives of terrain elevation, and through the visual interpretation of
morphometric, geological and structural maps.

For very small magnitude landslides (f = 1), the PMF is lowest in the Alps—
Apennines transition zone (3) followed by the Apennines mountain system
(4), and it is highest in Sardinia (8) followed by the Tyrrhenian borderland (5).
For large magnitude landslides (f > 25), the PMF is largest in the Apennines
mountain system (4) and lowest in the Tyrrhenian borderland (5) followed by
the Alps mountain system. For very small magnitude landslides (f = 1) the
FMF is largest in the Alps (1) followed by the Apennines (4), and lowest in the
Adriatic borderland (6) followed by Sicily (7) and Sardinia (8), whereas for
large magnitude landslides (f > 25) the FMF is largest in the Apennines (4),
followed by the Alps (1), and is lowest in the Alps—Apennines transition zone
(3) and in the Tyrrhenian borderland (5). The range of the PMF and the FMF
Zipf models is largest in the Alps (F = 1917, due to the Vajont rockslide) and it
is smallest in Sicily (F =5, E=21) and in Sardinia (F =8, E = 19).

13
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Zipf Model: Administrative Regibhs

Results of the Zipf model obtained for the different administrative Italian regions
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In a second attempt we consider instead the regional subdivision, which
helped to have a more detailed information on the spatial variation of risk.
Form this analysis we see that for very low magnitude landslides (f = 1) the
PMF is largest in Trentino—Alto Adige (4) followed by Sicily (19), and is lowest
in Emilia—Romagna (8) followed by Piemonte (2); whereas for large (f > 25)
and very large (f =2 50) magnitude landslides the PMF is largest in Emilia—
Romagna (8) followed by Lombardy (3) and Calabria (18), and is lowest in
Trentino—Alto Adige (4) with intermediate values in Campania (15) and
Veneto (6) (Table 2). Examining the FMFs for the 20 Italian regions, one finds
that for very low magnitude landslides the frequency of fatal landslides is
largest in Campania (15) followed by Trentino—Alto Adige (4), and is smallest
in Puglia (17), whereas for very large magnitude landslides the FMF is largest
in Campania (15) followed by Lombardy (3), and is smallest in Trentino—Alto
Adige (4). The magnitude range of the PMF and the FMF Zipf models is
largest in Veneto (6, F = 1917, due to the Vajont rockslide) and is smallest in
Puglia (17, F=5, E = 5).

Yearly Frequency Density, yFMF

14



Zipf Sparse Data

Zipf estimation for sparse data
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These risk figures, even if helpful for a preliminary comparison of the societal
landslide risk in Italy, discretize the territory over polygon boundaries and fail
to capture the internal and the cross border variability of the societal risk. To
solve these problems we design a procedure to derive regularly spaced Zipf
parameter estimations. For the purpose we used different grid spacings,
namely 50, 25 and 10 km and a circular kernel with different radius (10, 25,
40, 55, 70, 85, 100 km radius) for the stepwise selection of the fatal landslide
data. At each step the kernel is centered over a grid point and the data within
the kernel are selected and the relative Zipf paramters estimated. Here |
show just an example for the larger grid spacing for a kernel of 55 km radius.

15



Optimal Model Selection
How best grid spacing and kernel radius were selected?
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For each kernel and for each grid point of the different spacings, we
estimated Zipf parameters, their significance and we execute the
Kolmogorow Smirnow tests to evaluate the appropriateness of using Zipf
model for that particular kernel selection. These plot for each couple of grid
spacing and kernel radius show the averages and in some cases the standard
deviations of the parameters estimated by the procedure. Parameters varies
largely with the kernel radius and less with grid spacing. Considering the
expected optimal behavior of each parameter we chose a grid

spacing = 10 km and a kernel radius = 55 km as the “optimal” parameters
used to construct our spatially distributed predictive model of societal
landslide risk in Italy. The selection provides a high spatial resolution of the
prediction (grid cells of 100 km2) without losing model performance. Further,
using a sampling kernel area of about 9503 km2 (r = 55 km), in each grid cell
the single predictive models were determined with an average of 30 fatal
landslides. This guarantees that the scaling exponent of the Zipf distribution
model is robust, and its variability remains limited (on average os < 0.5).

16
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Optimal Societal Risk Mod“élarameters

Final parameter estimates of the optimal model
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Using the optimal combination of grid spacing and kernel radius we were
able to calculate the three main Zipf model parameters for each grid point
resulting in a regularly spaced estimation of the societal risk over Italy.

The three different colour scales rank the model parameter form the less
risky value (lighter colors) to the more risky values (darker colors). Indeed as
a first approximation darker colors mean higher level of societal risk.

17
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The model outcomes allow for designing scenarios of societal landslide risk in
Italy. From left to right, maps show the Probability Mass Function (PMF, Eq.
(B1)), the Frequency Mass Function (FMF, Eq. (B3)), the Complementary
Cumulative Distribution Function (CCDF, Eq. (B2)), the Complementary
Cumulative Frequency Distribution Function (CCFDF, Eq. (B4)), the yearly
Complementary Cumulative Distribution Function (yCCFDF, Eq. (B5)), and the
projected return period (tyCCFDF, Eq. (B6)).

The PMF and the FMF of the fatal landslides are largest for the very low
magnitude landslides (f = 1) and they reduce rapidly with the increase of the
landslide magnitude. This was expected, as in the historical record the
proportion of large magnitude landslides with many or very many fatalities is
significantly smaller than the proportion of low magnitude landslides with
one or a few fatalities. For very low magnitude landslides the PMF > 0.30 in
most of Italy, and PMF > 0.50 in most of NE Italy, in large parts of the
Apennines range and the Tyrrhenian borderland, and in NW Sicily.

The FMF is very large (FMF > 80) in the coastal area of Campania, in southern
Italy, and subordinately (FMF > 50) in the NE Italian Alps. Most of the Alps,
large parts of the Alps—Apennines transition zone, limited parts of the NW
Apennines, the area encompassing Rome and its surroundings, the southern
part of Calabria and an area in NE Sicily have FMF > 8. We take these as
evidences of the fact that single landslide fatalities can be expected in most

18



of the mountain areas and in large parts of the hills of Italy. For medium landslide
magnitudes (f = 10), the picture is somewhat different with most of Italy exhibiting
PMF £0.03, and FMF < 1. The pattern is even more evident for the large magnitude
landslides (f = 25), for which all of Italy has PMF £ 0.01 and FMF < 1.0. This is
evidence that very large magnitude fatal landslides are rare in Italy, but they can be
expected in significant parts of the mountains and the hills of Italy.

The maps showing the geographical distribution of the Complementary Cumulative
Distribution Function (CCDF), also known as the “survival” or “risk” function, provide
a more diverse picture of societal landslide risk in Italy. For very low magnitude
landslides, most of the Italian territory, and particularly the hills and the mountains,
have CCDF 20.30, indicating that the probability of experiencing f > 1 landslide
fatalities is large almost everywhere in Italy. For large (f > 10) and very large (f > 25)
magnitude landslides, the probability is large (CCDF 20.1) or very large (CCDF 20.2) in
SE Emilia—Romagna, and in places in Campania, Basilicata and southern Calabria (Fig.
9).

The yCCFDF was obtained dividing the CCFDF by the length of the observation
period, T = 155 years (t0 in Table 1), and therefore it shows a scaled version of the
CCFDF. For very low magnitude landslides the annual frequency is large (yCCFDF
>0.3) in Campania, and is yCCFDF >0.02 in small parts of the Alps. For medium
magnitude landslides (f = 10), the annual frequency is large (yCCFDF >0.08) in
Campania, and is yCCFDF 20.25 in large parts of the Alps, in parts of the Emilia—
Romagna region, and in southern Calabria. For large magnitude landslides (f = 25)
the annual frequency is large (yCCDFF >0.04) in Campania, and is yCCFDF 20.02 in
limited parts of the NE Alps and of the Emilia—Romagna region. Similarly, the return
period — the reciprocal of yCCFDF i.e., tyCCFDF = 1/yCCFDF — also shows a scaled
version of the CCDF and the yCCFDF. For the lowest magnitude landslides (f = 1) the
return period is short (t < 30 years) in most of the Alps, in the Alps—Apennines
transition zone, in large parts of the Apennines range, of the Tyrrhenian and the
Adriatic borderlands, and in NE Sicily. For large magnitude landslides (f > 25), most of
the hills and mountains of Italy exhibit a very large return period (tyCCFDF

>1000 years, light blue colour), whereas parts of the central and the eastern Alps, of
the Emilia—Romagna, Campania and Calabria regions have tyCCFDF 2150 years. In
these areas societal landslide risk should be considered high or very high.

18



Risk Model Verification

How the risk model was verified/validated?
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We validated the societal landslide risk model using information on 130 fatal
landslides in the magnitude range 1 < f <1300 occurred at 119 sites in the
861 years, t4 period 1000-1860. With this independent information, we
checked the anticipated (modelled) return period, tyCCFDF for fatal
landslides of magnitude f>1,f>5, f> 10 and f > 25 expected fatalities. The
four maps portray the geographical distribution of the expected return
periods for the four considered landslide magnitude scenarios, together with
the location of the fatal landslides (blue dots) with f > 1 (E = 137 fatal
landslides), f > 5 (E = 74), f > 10 (E = 58) and f > 25 (E = 37) fatalities occurred
in the t4 validation period 1000-1860.

Regardless of their magnitude (i.e., for f > 1), the majority of the fatal
landslides have occurred where the return period was anticipated to be
small, tyCCFDF <30 years. This is confirmed by the empirical Cumulative
Density Function (eCDF) for f > 1 (Fig. 10e) that increases very rapidly with
the return period, reaching the maximum value for tyCCFDF = 78 years. The
CDF shows that 50% of the landslides with f > 1 have occurred in areas where
TyCCFDF <6 years, and 90% of the landslides with f > 1 have occurred where
TyCCFDF <14 years. Similarly, 50% (90%) of the landslides with f > 5 have
occurred where TyCCFDF <21 (87) years. The figures indicate that in the t4
validation period the 67 (48.9%) reported very small and small magnitude
landslides (f < 5) have occurred at a lower occurrence frequency i.e., with a
higher return period than what was anticipated by the scenario (Fig. 9). We
explain this result with the known incompleteness of the landslide record,

t(Czc)=1/Fy(Czc) 0 75 150 300 450 550 850 1000>1000
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particularly for the old and very old periods and for landslides with one or a few

fatalities (Guzzetti et al., 2005b). For the large and very large magnitude landslides
(f > 25), examination of Fig. 10d reveals that 25 landslides (67.8%) occurred where
TyCCFDF <600 years, and 12 landslides where tyCCFDF 21000 years i.e., where the

return period was anticipated to be very low.
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To assess the temporal variation of societal landslide risk in Italy, we
segmented the 150-year period 1866—2015 in three 50-year sub-periods i.e.,
t1, 1966-2015, t2, 1916-1965 and t3, 1866—-1915 (Table 1), which
collectively cover a very large part (96.8%) of the t0 period 1861-2015. For
each sub-period, we repeated the analysis performed before on the t0 period
— described in Section 5.1 — using the same “optimal” pair of geometric
model parameters (g = 10 km and r = 55 km), and we then compared the
geographical distributions of the model variables {Fk, Ek, sk} obtained for the
three sub-periods. Inspection of the results, summarized in the figure, reveals
a general similarity of the societal landslide risk models obtained for the
recent, t1 (1966—2015) and the intermediate, t2 (1916—-1965) sub-periods,
which both differ notably from the model obtained for the old, t3 (1866—
1915) sub-period. We maintain that the differences depend chiefly on the
different completeness of the landside record for the three sub-periods,
which also affected the proportion of the Italian territory for which the risk
models could be prepared.
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Assumptions & Limitations

Main modelling assumptions and limitations

Bl Largest magnitude fatal landslides, the number of fatal landslides, and
the scaling exponent of the Zipf distribution model, together are a good
measure of landslide risk to the population;

M Zipf distribution was assumed adequate to represents the frequency and
the probability of different magnitude fatal landslides;

M Physical conditions controlling landslide hazard — and hence societal risk
— have not changed in the examined period;

B Anthropic factors that condition societal landslide risk (e.g., the
population distribution and density) have not changed in Italy in the 155-
year considered period (strong assumption because the population of

Italy has almost tripled from 1861 to 2015 but mostly in large plains).

Rossi 2020
mauro.rossi irpi.cnr.it Vienna,

Largest magnitude fatal landslides, the number of fatal landslides, and the
scaling exponent of the Zipf distribution model, together are a good measure
of landslide risk to the population;

Zipf distribution was assumed adequate to represents the frequency and the
probability of different magnitude fatal landslides;

Physical conditions controlling landslide hazard —and hence societal risk —
have not changed in the examined period;

Anthropic factors that condition societal landslide risk (e.g., the population
distribution and density) have not changed in Italy in the 155-year considered
period (strong assumption because the population of Italy has almost tripled
from 1861 to 2015 but mostly in large plains).
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Main Results

Main results and conclusion

M Proposed a model for societal landslide risk from historical, sparse data
on fatal landslides and their consequences.

M Societal landslide risk in Italy cannot be described by a single metric, and
varies geographically and temporally (very high in the NE Alps and in the
coastal area of Campania; high in large parts of the central Alps, in Liguria,
in parts of the northern Apennines range, and in southern Calabria and NE
Sicily; low in parts of central Italy, in Sicily and in Sardinia).

B Different risk metrics and scenarios can be estimated from the proposed
model and used to compare societal landslide risk over the territory.

B Model is applicable to similar sparse data, even to estimate societal risk
posed by other natural hazards (e.g. floods).
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Proposed a model for societal landslide risk from historical, sparse data on
fatal landslides and their consequences.

Societal landslide risk in Italy cannot be described by a single metric, and
varies geographically and temporally (very high in the NE Alps and in the
coastal area of Campania; high in large parts of the central Alps, in Liguria, in
parts of the northern Apennines range, and in southern Calabria and NE
Sicily; low in parts of central Italy, in Sicily and in Sardinia).

Different risk metrics and scenarios can be estimated from the proposed
model and used to compare societal landslide risk over the territory.

Model is applicable to similar sparse data, even to estimate societal risk
posed by other natural hazards (e.g. floods).
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