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Introduction

• Fast-moving interplanetary coronal mass ejections (ICMEs) cause pile-ups of 

slower solar wind ahead called sheaths

• ICME sheaths contain hot, dense plasma with a 𝐵-field that is high in 

magnitude and that can be strongly fluctuating and turbulent (e.g., Kilpua 

et al. 2019)

• In addition to ICME ejecta, they can be sources of –𝐵𝑧 and drivers of space 

weather at Earth

• Sheaths observed at 1 au contain an accumulation of sub-1 au solar wind 

plasma

• How do the properties of magnetic field fluctuations in ICME sheaths 

evolve with radial distance from the Sun?
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The November 2010 line-up 
event: a case study

• We have studied an ICME sheath observed at MESSENGER (0.47 au) and 

STEREO-B (1.08 au) while the spacecraft were radially aligned in November 

2010.  The ICME’s flux rope has been studied previously (e.g., Good et al. 

2019; Vršnak et al. 2019)

• The sheath bounding the sheath front took ~55 hrs to propagate between the 

spacecraft, and changed from a quasi-parallel to quasi-perpendicular 

geometry during this time

• The sheath duration grew from ~5 hrs to ~8.33 hrs between the spacecraft, 

as the sheath both accumulated new material and expanded

(Note that the sheath B-field data at STEREO is absent in some merged B-field/plasma datasets but 

can be found in the original STEREO MAG data at cdaweb) 
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B-field observations
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𝛿𝐵/𝐵 distributions

6

Core population, mostly 

incompressible turbulence
Compressive distribution tails (e.g., 

current sheets, magnetic holes)

• B-field fluctuates across a range of 

timescales, Δ𝑡
• Define 𝐵-field fluctuations as two-

point differences in time:

𝛿𝐵 = 𝐵(𝑡) – 𝐵(𝑡 + Δ𝑡)

• Normalise with mean |𝐵| from 𝑡 →
𝑡 + Δ𝑡 to give 𝛿𝐵/𝐵

• Distributions of 𝛿𝐵/𝐵 for a range 

of Δ𝑡 values were found, in the 

sheath intervals and preceding 

solar wind at each s/c

• Distribution shape in each interval varies with Δ𝑡 as expected for solar wind plasma (e.g., Matteini et al. 

2018) → generally less sharply peaked, more gaussian with increasing Δ𝑡
• Sheath distributions develop longer compressive tails (𝛿𝐵/𝐵 > 2) at 0.47 au compared to upstream

wind → development of compressive structures, magnetic holes etc.

• Less difference between sheath and upstream wind at 1.08 au

• Changes in distributions from 0.47 au to 1.08 au largely due to evolution in turbulence
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Turbulence and compressibility

• Mean fluctuation amplitudes 𝛿𝐵 increased by a 
factor of ~10 from solar wind to sheath at each s/c, 
and fell by a factor of ~10 from 0.47 to 1.08 au

• Slopes of 𝛿𝐵 are related to turbulent properties of 
the fluctuations; slopes at inertial range timescales 
were calculated in the sheath intervals and upstream 
wind

• Assuming length scale 𝑙 ∝ ∆𝑡, a 𝛿𝐵 ∝ 𝑙1/3

relationship is equivalent to the 𝑘−5/3 scaling of 
power spectral density in 𝑘-space

• At 0.47 au, the 𝑙-space slope steepened from 0.29 
(i.e. less steep than 1/3 Kolmogorov) in the upstream 
wind to 0.35 in the sheath → non-Kolmogorov 
turbulence or under-developed cascade in 
upstream wind evolved with transition to sheath

• Further steepening to 1.08 au, with indices of 0.40 
and 0.42 (steeper than 1/3 Kolmogorov) in the 
upstream wind and sheath, respectively → further 
evolution of turbulence, possible growth in 
intermittency

• Fluctuation compressibility 𝜹 𝑩 /𝜹𝑩 grew with 
radial distance
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Entropy and complexity

• Permutation entropy (𝐻) and 
Jensen-Shannon complexity 
(𝐶) can be used to determine 
whether a time series is 
generated by stochastic or 
chaotic processes, and can 
indicate the relative abundance 
of coherent structures vs. 
stochastic fluctuations

• At intermediate and large 
fluctuation timescales, 𝑯 grew 
and 𝑪 fell in the sheath and 
upstream wind with radial 
distance, consistent with the 
solar wind study of Weygand & 
Kivelson (2019)

• 𝐻 was lower and 𝐶 higher in 
the sheath compared to the 
upstream wind at each s/c → a 
more complex mix of 
coherent structure and 
stochastic fluctuations in the 
sheath  
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Planar magnetic structuring

• Sheaths may contain planar magnetic structures (PMSs), within which the 𝐵 direction over time 
varies within a plane but not normal to it

• Two PMS intervals were identified in the sheath at both s/c (beige intervals in figure)

• First interval may have been due to field alignment behind the shock, while second may have been 
due to field draping around the flux rope

• Growth in PMS with radial distance likely due to accumulation of plasma in sheath with 
distance, and expansion (e.g., Lugaz et al. 2020)
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Discussion and Summary

• At 0.47 au, the sheath turbulent properties differed significantly to those of the 
upstream wind → possibly dependent on the q-par shock geometry

• At 1.08 au, the sheath turbulence was more similar to that seen in the upstream 
wind → the q-perp shock may have caused less modification of the upstream wind 
turbulence

• Processes occurring near the flux rope leading edge also likely modified the 
turbulence properties in the sheath

• The steepening of the spectral slope in the sheath with radial distance mirrored that 
of the upstream wind

• The magnetic field time series was more complex in the sheath compared to the 
upstream solar wind, suggesting a more complex mix of structures and random 
fluctuations; complexity in the sheath and upstream wind fell with radial distance

• Planar magnetic structuring became more prevalent with radial distance

• Further case studies are required to build a more statistical picture
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