GEFÖRDERT VOM

Intensive broadcast slurry management and climate warming threaten soil organic nitrogen stocks of montane grasslands

Zistl-Schlingmann, Marcus⁽¹⁾; Wilfahrt, Peter⁽³⁾; Berauer, Bernd⁽³⁾; Jentsch, Anke⁽³⁾; Kiese, Ralf⁽¹⁾; Kwatcho-Kengdo, Steve⁽¹⁾; Wolf Benjamin⁽¹⁾; Garcia-Franco Noelia⁽²⁾; Wiesmeier, Martin⁽²⁾; Kögel-Knabner, Ingrid⁽²⁾; Dannenmann, Michael⁽¹⁾ **Contact: michael.dannenmann@kit.edu**

Approach: Combining a mesocosm- based space for time climate change experiment with tracing of ¹⁵N labelled slurry and quantification of Nitrogen (N) inputs and outputs of grassland soils

The effect of climate change and management on N balances of a C- and N-rich grassland soil (Rendzic Phaeozem) in Southern Germany is investigated.

Climate change is simulated by space for time translocation of intact plant-soil mesocosms (diameter: 17 cm, depth: 25

- cm) originating from a **montane grassland site** (Esterberg) down an elevational gradient.
- Full factorial combination with slurry management treatments: extensive (2 cuts, i.e., harvests by mowing, 2 slurry fertilization events) vs. intensive (5 cuts, 5 slurry fertilization events).
- Quantification of slurry N fates by ¹⁵N tracing of labeled (¹⁵NH₄⁺ and ¹⁵N-urea) slurry N, quantification of N inputs (slurry, atmospheric deposition, biological nitrogen fixation (BNF)), internal N cycling, and N outputs (yield, gaseous losses, leaching).

Key findings and implications

- The investigated grasslands are highly productive with plant N exports exceeding slurry N inputs in all management and climate treatments.
- Surface slurry application contributes little to plant N nutrition (8-15% of slurry-N in plants), but rather serves to refuel soil organic nitrogen (SON) stocks (20-32 % of slurry N in unextractable soil N).
- Refueling of SON through liquid slurry however is inefficient because about half of slurry-N is lost to the atmosphere mainly as N₂ and NH₃, while nitrate leaching is hardly significant.
- Plant N acquisition is largely based on mineralized soil organic nitrogen (SON) and thus little affected by fertilization.
- The overall N balance is negative for all treatments mainly due to high plant N exports, i.e., there is SON mining.
- Surprisingly, intensive management further increases SON mining compared to extensive management, possibly through priming effects that result in additional SON mineralization and associated plant N exports that exceed the additional net N gain from fertilization

Climate change strongly increases N mining for the extremely C- and N-rich Rendzic Phaeozem soil due to a stimulation of productivity and associated increases in plant harvest N exports.

N flows (kg N ha⁻¹ yr⁻¹)

Pathways of N in the soil under extensive (left) and intensive (right) management. ^a Deposition is obtained from LfL (2011) and BNF from Keuter et al. (2014). Asterisks indicate significant differences between management treatments, significant differences for slurry N flow to SON or plant biomass are given for relative recovery in the respective pool, all other differences refer to the absolute pool or flow size.

Conclusion

We conclude that broadcast surface slurry application is triggering N mining especially under intensive management and climate change and thus should be replaced by alternative management techniques that minimize fertilizer N losses.

Literature

Zistl-Schlingmann M, Tobler U, Berauer B, Garcia-Franco N, Wilfarth P, Wiesmeier M, Jentsch A, Wolf B, Kiese R, Dannenmann M 2020. Intensive slurry management and climate change promote nitrogen mining from humus-rich montane grassland soils. *Agriculture, Ecosystems & Environment*, submitted.

Zistl-Schlingmann M, Kwatcho Kengdo S, Kiese R, Dannenmann M 2020. Management intensity controls N-use-efficiency and flows in grasslands - a ¹⁵N tracing experiment. *Agronomy*, submitted.

Wang C, Chen Z, Unteregelsbacher S, Lu H, Gschwendtner S, Kolar A, Kiese R, Schloter M, Butterbach-Bahl K, Dannenmann M 2016. Climate change amplifies gross nitrogen turnover in montane grasslands of Central Europe both in summer and winter seasons. *Global Change Biology*: 22, 2963-2987.

Fu, J., Gasche, R., Wang, N., Lu, H., Butterbach-Bahl, K., Kiese, R., 2017. Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils of S-Germany. Environmental Pollution 229, 119–131.

Zistl-Schlingmann M, Feng J, Kiese R, Stephan R, Zuazo P, Willibald G, Wang C, Butterbach-Bahl K, Dannenmann M 2019. Dinitrogen emissions: an overlooked key component of the N balance of montane grasslands. *Biogeochemistry*, 143, 15-30.

www.susalps.de

