Towards operational monitoring of ship emissions using Long Path Differential Optical Absorption Spectroscopy

Stefan Schmitt^{1,2}, Denis Pöhler^{1,2*}, Andreas Weigelt⁴, Barbara Mathieu-Üffing⁵, Lisa Kattner^{3,4}, André Seyler³, Kai Krause³, Folkard Wittrock³, Johannes Lampel^{1,2} and Ulrich Platt²

(1) AirYX GmbH, Eppelheim, Germany, (2) Institute of Environmental Physics, University Heidelberg, Germany, (3) Institute of Environmental Physics, University Bremen, Germany, (4) Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency), Germany, (5) Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein Technischer Umweltschutz (Abt. 7)

Emission Control Aeras (ECAs)

Emission Control Aeras (ECAs)

- MARPOL Annex IV by IMO regulates the emission of air pollutants by ships [1]
- Ship emissions of Sulphur compounds SO_x (mainly SO2) are limited within Sulphur (S)ECAs
- Implies limitation of Sulphur fuel content (SFC) to 0.1% m/m inside and to 0.5% m/m outside of SECAs [2]
- Limitation of NO_x emissions for diesel engines of over 130kW output within ECAs depending on ship construction date

Tier	Ship construction date on or after	Total weighted cycle emission limit (g/kWh) n = engine's rated speed (rpm)		Table source [2]	
		n < 130	n = 130 - 1999		n ≥ 2000
I	1 January 2000	17.0	45∙n ^(-0.2) e.g., 720 rpm – 12.1		9.8
Ш	1 January 2011	14.4	44∙n ^(-0.23) e.g., 720 rpm – 9.7		7.7
Ш	1 January 2016	3.4	9·n ^(-0.2) e.g., 720 rpm – 2.4		2.0

AIL()

Tier III limits apply within NO_x ECAs, Tier II outside of ECAs

[1] <u>www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Air-Pollution.aspx</u>

[2] www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Sulphur-oxides-(SOx)---Regulation-14.aspx

[3] www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Nitrogen-oxides-(NOx)---Regulation-13.aspx

Controlling ECA compliance

Compliance with MARPOL regulations demands:

- Use of refined **expensive marine diesel oil** (low Sulphur content) instead of heavy fuel oil
- Upgrading ships with scrubber units to reduce Sulphur emissions (need to be continuously washed with sea water)
- Application of Selective Catalytic Reduction (SCR) for removal of NOx in exhaust gas (needs ammonia as additional consumable)

>ECAs increase ship operation costs

Reliable evidence for violations only possible by fuel sample
• Expense limits efficient control

Alternative continuous monitoring can increase control efficiency for suspicious ships

Sulphur fuel content (SFC) from exhaust gases

 CO_2 in plume is correlated to the amount of burned fuel (carbon fuel content 87%, [1]) \rightarrow SO₂/CO₂ ratio indicates SFC (Sulphur per burned fuel (mass/mass))

^[1] Cooper et al.: Exhaust emissions from ships at berth, Atmos. Environ., 37, 3817-3830, 2003

^[2] Kattner, L. et al.: Monitoring compliance with sulfur content regulations of shipping fuel by in situ measurements of ship emissions, Atmos. Chem. Phys., 15, 10087-10092, 2015.

SFC monitoring using in situ instruments on shoreline

Currently applied by Federal Hydrographic agency (BSH) and IUP Bremen (MESMART project www.mesmart.de)

<u>Advantage</u>

Airux

• Multi-component measurements (SO_2, NO_x, CO_2, O_3) .

Direct monitoring of:

- Sulphur fuel content (SO₂/CO₂)
- Emission factors for $NO_x (NO_x/CO_2)$

<u>Disadvantage</u>

- Relies on meteorological transport of emission plume (backward trajectories), limitation by wind direction and speed
- Plume dilution during travel time reduces signal strength

 \rightarrow Valid signal only for few passing ships

Using Long Path-DOAS for ship plume monitoring

 Remote sensing of atmospheric trace gases like NO2, SO2, O3 using Differential Optical Absorption Spectroscopy (DOAS) [1]

[1] Nasse et al., 2019, <u>https://doi.org/10.5194/amt-12-4149-2019</u> Schmitt et al.: Towards operational monitoring of ship emissions using Long Path Differential Optical Absorption Spectroscopy

Top: Scheme of an LP-DOAS instrument.

Right: Trace gases with differential absorption features which can be detected with the DOAS method.

- Measurements of ship plumes in close proximity to point of emission
- Application at harbour entrances (usually 500 to 1000m width) or rivers (for inland shipping)

Introduction of novel commercial LP-DOAS instrument

- Spin-Off from Institute of environmental Physics, University of Heidelberg (<u>https://airyx.de/</u>).
 - Focused on development of commercial DOAS instruments.

Instrument specifications:

Dimensions	70x35x60 cm^3			
Weight	<10 kg			
Power consumption	<100W			
Detectable species (simultaneous)	NO2, SO2, O3, HCHO, HONO, H2O			
Light source	High power broadband laser driven xenon arc lamp			
Time resolution	1-3 seconds			
Meas. Path lengths	100 – 3000 m			
Spectral range / resolution	310-465 nm / 0.8 nm			
Calibration gases	Not required			
Telescope adjustment	Automatic path alignment			

Airyx LP-DOAS at Elbe river currently operated by K. Krause and F. Wittrock of IUP Bremen in cooperation with BSH (Federal Hydrographic Agency, Germany).

Six weeks of LP-DOAS measurements of ship plumes near Hamburg harbour

Airyx

Six weeks of LP-DOAS measurements of ship plumes near Hamburg harbour

Airyx

Distribution of ship types passing the measurement site during measurement period

- Frequency distribution of ships separated by types passing the instruments during the measurement period.
- Occurrences are displayed on a logscale for the sake of readability.
- Black bars represent the total number of ship passes while white bars represent the total number of individual ships. (Some ships frequently passed the measurement site during the measurement period, e.g. ferries)

Assignment of LP-DOAS data to ship emission plumes

- Identification of background concentrations (low pass filtered data running median with appropriate window size)
- If data differs 2*sigma from background plume data (red)
- If peak data is within time window prior (30sec) or posterior (60 sec) of a single ship pass, it is assigned to that particular ship.
- Ozone dips correlate with NO₂ peaks and indicate strong NO to NO₂ titration while plume dilutes (Diesel engine NO_x emissions are dominated by NO)
- Quantification of NO_x using NO₂ is problematic since depending on plume travel time and O₃ availability!

Performance of the LP-DOAS instrument

- Time resolution: 1 to 3 seconds
- Total measurement path length: 5.74 km
- SO₂, NO₂ signal to noise ratio meets requirements of plume monitoring
- No significant detection of HCHO in plumes

Average detect [ppbv]	verage detection limits ppbv]					
SO ₂	0.08					
NO ₂	0.44					
O ₃	4.85					
НСНО	1.44					
HONO	0.24					
	Average detect [ppbv] SO_2 NO_2 O_3 HCHO HONO					

Histograms of 6 weeks of LP-DOAS data. RMS from DOAS fit of two spectral windows (297-309 and 334.5-356.6 nm)

AIRUX

SO2 / NO2 ratios from LP-DOAS data

Plume detection yield - LP-DOAS vs in situ

- Using ships with high number of passes as "benchmark" ships
- Detection yield = ratio of successful ship detections (via NO₂ for LP and CO₂ for in situ) and total number of ship passes for each benchmark ship
- For larger ships (length>50m) the yield for LP-DOAS is approx. three times higher than for in situ
- Smaller ships are barely detected by in situ

 → Smaller engines, weaker emission signature
 → Plume transport/dilution leads to insignificant
 - signal, thus no ship assignment
- Averaged detection yields for all ship types:
 - ➢ In situ: 16%

Airu)

➢ LP-DOAS: 44%

	Benchmark ship	5	Ship Ship		Det. yield [%]				
	[type]	Len	gth [m]	passes	IS $\rm CO_2$	$LP NO_2$			
	Dredging vessel		152	109	29	64			
	Dredging vessel		95	92	27	56			
	High Speed Craft		51	71	30	69			
Dredging vessel			40	72	0	27			
Passenger			34	590	7	35			
	Law enforcer		30	90	3	36			
	Law enforcer		24	75	3 31				
	0 10	20	30	40	50	60 70			
ll ship typ	bes				·				
Cargo s	hip								
Hi Spd C	Crft								
Law enfo	orc.			I					
Other s	hip					² (NO ₂)			
Passen	ger				🗔 In	situ (CO_2)			
SAR ves	sel								
Tan	ker								
т	ug								
Vessel:di	reg								
	0 10	20	30 Shahility fr	40 or different	50 Shin types [9	60 70			
Bar plot · Detection vields for IP (black bars)									
			,	- ,	1~100	~~~~)			

and in situ (white bars) for all ships

All

Estimation of emission strengths from LP-DOAS

NO excess in plume \rightarrow Plume is O3 free

- Estimate plume width P from ozone decrease dO3 (see slide #12) using: P = L (dO3 / O3_bg)
- Apply simple gaussian dispersion model to estimate source strength Q:

Method under development.

Airyx

Conclusion

- **Operational monitoring** of ship emissions with LP-DOAS is feasible
- No dependency on meteorological plume transport enables higher detection yields compared with in situ (44% vs 16%)
- Measurement path lengths (2-3 km) suitable for most harbour entrance widths
- Fast measurement response of 2-3 seconds sufficient fast for passing ships
- Automatic measurement with low maintenance and no required consumables (no calibration gases needed) allow simple long term monitoring
- Planed system extensions: derive precise emission factors
 > simultaneous measurement of CO₂ and NO (not possible with current LP-DOAS setup)

