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Objective of this work

The objective is to produce a hybrid (physical/data-driven) model

x(t+ δt) = Mφ[x(t)] +MUN[x(t)],

where:

• x(t) is the state of the dynamical system
• Mφ is the physical model (assumed to be known a priori)
• MUN is the unresolved component of the dynamics to be inferred from data
• δt is the integration time step

MUN is approximated by a data-driven model represented under the form of a
neural network whose parameters are θ: Mθ[x(t)]

What is known:
• Observations of the system
yk = H(xk) + ϵobs

k

• The observation operator H and
observation noise statistics

• The physical modelMφ

What is to be determined (unknown):
• The state of the system xk = x(tk)
(0 ≤ k ≤ K);

• The neural networks and its
associated parametersMθ .
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Proposed approach

Observation Setup
Observations yk are assumed to be made at each ∆t time step such as ∆t = Ncδt
(Nc is a positive integer and δt is the integration time step).

Simplified description of the algorithm:

1. Estimating the state xa
1:K . At each time tk , we calculate a forecast xf :

xf
k+1 = xf(tk +∆t) = (Mφ)Nc (xa

k )

An observation yk+1 is assimilated to produced an analysis state xa
k+1

2. Determining an estimation of the unknown part of the model. We assume that:
• x(t + ∆t) ≈ (Mφ)Nc (x(t)) + Nc · MUN[x(t)]
• x(t) ≈ xa(t)

We consider thatMUN(xk) ≈ zk+1 = 1/Nc ·
(
xa
k+1 − xf

k+1

)
3. Training a neural networkMθ by minimizing the loss
L(θ) =

∑K−1
k=0 ||Mθ(xa

k )− zk+1||2

4. Using the hybrid modelMφ +Mθ to produce new simulations (e.g. to make
forecasts).
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Numerical experiment setup

We illustrate the algorithm using the Lorenz 2-scale model

• The “unknown” model
(to be represented by a neural network)

• The physical model
(assumed to be known)

dxn
dt

= ψ+
n (x) + F − h c

b

9∑
m=0

um+10n ,

dum
dt

=
c
b
ψ−
m (bu) + h c

b
xm/10,

ψ±
n (x) = xn∓1(xn±1 − xn∓2)− un,

n = 0, · · · , Nx − 1 (Nx = 36), m = 0, · · · , Nu − 1 (Nu = 360), (c, b, h, F) = (10, 10, 1, 10).

Data generation
The full model ( + ) is integrated using RK4 scheme with an integration time
step δt = 0.005 to generate the true field x0:K . The observations are produced at
each ∆t = 3 · δt time steps by perturbing the true field with a centered gaussian of
standard deviation σobs = 1.
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Algorithm setup

Data assimilation
We use a square-root ensemble Kalman smoother with a ensemble of size 50, a
multiplicative inflation of 1.08 an additive noise of 0.06 at each time step δt and a lag
of 12 time steps.
https://github.com/nansencenter/DAPPER

Neural network
The neural network is composed of 3 convolutional layers. Hyperparameters (size of
each layer, batchsize, optimizer, regularization, ...) are determined via Bayesian
optimisation (hypertopt package).
For an upper bound hybrid model, we train a additional neural net with ”true data”
(xa
k = xk).

https://keras.io/
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Preliminary results

Figure 1: Trajectory of the true model and the
hybrid model with noisy observations.

Figure 2: RMSE of the forecast of the physical
model (orange) and the hybrid model (green)
with perfect (dashed line) and noisy (plained
line) observations.
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Conclusion and discussion

• We introduced an algorithm to learn the unknown part of a numerical model from
data and to combine it with a known physical part (whose adjoint may not be
known). The algorithm was illustrated with the Lorenz 2-scale model.

• This algorithm relies on data assimilation and machine learning techniques. DA is
instrumental to handle partial and noisy data that then inform the ML process.

• The proposed learning algorithm used algorithms that have individually proved
their efficiency for high-dimensional systems.

• The hybrid model produced can be expensive to compute because of, e.g.,
different computing requirement (CPU multiprocessors vs GPU).

• Our approach is able to handle two main issues arising in realistic applications:
(i) one has not generally access to observations of the model tendencies, and, (ii)
observations are available at a lower frequency than the model computational
time-step.

• The approach relies on the fact that the dynamics is well sampled in time by the
observations, so only the larger time scale variability (relatively to ∆t) are
properly learnt by the neural network.
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