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Objective of this work

The objective is to produce a hybrid (physical/data-driven) model
X(t + 8t) = MP[x(t)] + MYN[x(2)],
where:

- X(t) is the state of the dynamical system
- M¥ is the physical model (assumed to be known a priori)
- MUYN s the unresolved component of the dynamics to be inferred from data

- dtis the integration time step

MUN is approximated by a represented under the form of a
neural network whose parameters are 8: Mg[x(t)]

What is known: What is to be determined (unknown):
- Observations of the system - The state of the system x;, = x(tx)
Vi = H(Xg) + €5bs (0 < R<K);
- The observation operator H and - The neural networks and its
observation noise statistics associated parameters Mag.

- The physical model M¥
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Proposed approach

Observation Setup

Observations y, are assumed to be made at each At time step such as At = N¢6t
(N¢ is a positive integer and 4t is the integration time step).

Simplified description of the algorithm:

1. Estimating the state x*,. At each time t,, we calculate a forecast xf:
X0 = X (t + At) = (M) (xR)
R+1 k R

An observation yp,4 is assimilated to produced an analysis state xj_,
2. Determining an estimation of the unknown part of the model. We assume that:
© X(t+ AL) & (M?)(x(1) + Ne - MUINx(D)]
-+ X(t) = x*(t)

We consider that MYN(x;) ~ zp4q = 1/Nc - (x;;+1 - Xfm)

3. Training a neural network Mg by minimizing the loss
L(8) = X525 1Mo (x2) — ZiyalI?

4. Using the hybrid model M% + My to produce new simulations (e.g. to make
forecasts).
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Numerical experiment setup

We illustrate the algorithm using the Lorenz 2-scale model

- The “unknown” model
(to be represented by a neural network)

- The physical model
(assumed to be known)

9
dx c
—= = () +F — A= Umion|.
dt b
m=0
dum c  _ c
— = - bu) + h—xm /10,
at b¢m( )+ pXm/10
wrflt(x) = Xnx1(Xn£1 — Xnx2) — Un,
n=0,---,Ny —1(Nx =36),m=0,---,N, —1(Ny, = 360), (c, b, h, F) = (10, 10, 1, 10).

Data generation
The full model (@ + ) is integrated using RK4 scheme with an integration time
step 6t = 0.005 to generate the true field xq.x. The observations are produced at

each At = 3 - §t time steps by perturbing the true field with a centered gaussian of
standard deviation oops = 1.
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Algorithm setup

Data assimilation

We use a square-root with a ensemble of size 50, a
multiplicative inflation of 1.08 an additive noise of 0.06 at each time step §t and a lag
of 12 time steps.

https://github.com/nansencenter/DAPPER

Neural network

The neural network is composed of 3 . Hyperparameters (size of
each layer, batchsize, optimizer, regularization, ...) are determined via Bayesian
optimisation (hypertopt package).

For an upper bound hybrid model, we train a additional neural net with "true data”

(x‘;)\t = Xp).

https://keras.io/
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https://github.com/nansencenter/DAPPER
https://keras.io/

Preliminary results

E = '__:_'T'E_ﬁj:_:—_-. [ Figure 2: RMSE of the forecas.t of the physical
% | 2 3 . s model (orange) and the hybrid model (green)
with perfect (dashed line) and noisy (plained

Figure 1: Trajectory of the true model and the line) observations.

hybrid model with noisy observations.
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Conclusion and discussion

- We introduced an algorithm to learn the unknown part of a numerical model from

data and to combine it with a known physical part (whose adjoint may not be
known). The algorithm was illustrated with the Lorenz 2-scale model.

- This algorithm relies on data assimilation and machine learning techniques. DA is

instrumental to handle partial and noisy data that then inform the ML process.

- The proposed learning algorithm used algorithms that have individually proved

their efficiency for high-dimensional systems.

- The hybrid model produced can be expensive to compute because of, e.g.,

different computing requirement (CPU multiprocessors vs GPU).

- Our approach is able to handle two main issues arising in realistic applications:

(i) one has not generally access to observations of the model tendencies, and, (ii)
observations are available at a lower frequency than the model computational
time-step.

- The approach relies on the fact that the dynamics is well sampled in time by the
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observations, so only the larger time scale variability (relatively to At) are
properly learnt by the neural network.
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