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Abstract: Predicting wheat yield is crucial due to the importance of wheat across the world.
When modeling yield, the difference between potential and actual yield consistently changes
because of advances in technology. Considering historical yield potential would help determine
spatiotemporal trends in agricultural development. Comparing current and historical yields in
Denmark is possible because yield potential has been documented throughout history. However,
the current national winter wheat yield map solely uses soil properties within the model. The aim of
this study was to generate a new Danish winter wheat yield map and compare the results to historical
yield potential. Utilizing random forest with soil, climate, and topography variables, a winter
wheat yield map was generated from 876 field trials carried out from 1992 to 2018. The random
forest model performed better than the model based only on soil. The updated national yield map
was then compared to yield potential maps from 1688 and 1844. While historical time periods are
characterized by numerous low yield potential areas and few highly productive areas, current yield
is evenly distributed between low and high yields. Advances in technology and farm practices have
exceeded historical yield predictions, mainly due to the use of fertilizer, irrigation, and drainage.
Thus, modeling yield projections could be unreliable in the future as technology progresses.

Keywords: yield modeling; machine learning; climate; yield potential; historical yield

1. Introduction

Developing accurate national yield models is challenging due to variations in growth conditions
across large areas and changes through time. A range of models have been created to simulate crop
growth because of the importance of predicting yield accurately (e.g., CERES-Wheat: [1]; WOFOST: [2];
Sirius: [3]). Correctly modeling yield is necessary for an array of crops, but a large number of studies
have focused on wheat. Wheat is a staple food globally, corresponding to approximately 30% of total
world cereal production, and provides a large portion of both daily calories and protein for people
across the world [4]. Wheat is grown in nearly all parts of Europe [5], spanning a wide range of soil
types and climate zones, meaning the models are required to be diverse and robust.

The importance of wheat has driven research to determine what affects yield potential [6-10].
Many decisions made by farmers alter yields (crop variety, planting date, irrigation, etc.); however,
many factors affecting yield potential are independent from the farmer’s decisions. Three major
components affecting yield are: soil, climate, and topography. Soil properties, such as structure and
clay percentage, either hinder or promote growth [11]. Fluctuations in temperature and precipitation
have been found to be key reasons for uncertainty in yield predictions [12]. Topography can impact
yield by affecting water flow, energy supply, and accumulation of soil and nutrients in an area [13,14].
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Incorporating aspects of soil, climate, and topography in modeling yield is difficult due to the
complexity of these environmental factors.

Recently, many studies have used machine learning (ML) techniques, instead of statistical
methods, as a way to predict yields. ML algorithms allow for a high degree of complexity and
are capable of learning from large datasets. While some ML techniques are viewed as a black box,
many linear and nonlinear relationships can be discovered using a sole ML algorithm that requires
different statistical models [15,16]. Another benefit of ML is the ability to integrate different types of
data easily. Data fusion has been a key focus for improving wheat yield predictions. National yield
models could be improved by coupling data, such as climate and sensor data (i.e. from satellite images
and proximal soil sensing), with ML algorithms to predict yield [17,18]. Most models make predictions
of current yield, but as technology advances, current yield models will be unreliable because the yield
potential will continue to change.

The difference between yield potential and actual yield indicates that limiting factors exist in
the field while a crop is growing [19]. Yield potential is defined as a crop that has adapted to the
environment and is not limited in terms of water and nutrients [20]. Advances in technology will
increase both potential and actual yields of a crop. To assess the changes in yield, studies typically
look at historical yield within the 20th century [21,22]. Denmark, on the other hand, has detailed
yield potential for the entire country from as early as the 17th century [23]. King Christian V’s Great
Danish Land Register of 1688 and The Great Danish Land Register of 1844 provided valuable information
to determine the natural growth potential before advances in mechanical farm technology were wide
spread. These land registers are comprehensive for the entire country, and include land evaluations.
Both of these land registers used hard grain values to evaluate the land. Hard grain, a measure used to
determine how much was payable to landlords, was equivalent to a certain about of a product (rye,
barley, wheat, honey, geese, etc.) and was based on area and soil quality [23,24].

Denmark has a large portion of the country dedicated to arable land (over 60% [25]), and has
consistently been highly farmed throughout history. The high level of farming through the years
provides a unique opportunity to compare historical yield potential with current yields. The changes
may indicate how advances in technology and farming practices have driven agricultural production.
Winter wheat covers 23% of the total cultivated land in Denmark [25], making winter wheat an
important crop for the country. However, the previous effort to model winter wheat for Denmark was
based on a statistical model only utilizing soil properties [26]. The following model was developed to
predict yield from soil properties:

Yopt = 4.78 4+ 6.67 x (% Clay + % Silt) + 0.11 x Ry — 0.21 x (% Clay + % Silt) x Ry @)

where Y is predicted yield in t ha™! and Ry is (% Clay + % Silt) /% Organic Carbon. The model
includes clay, silt, and organic carbon of the topsoil (0-30 cm) only.

This study has two main objectives: (1) to update the current national winter wheat yield map
of Denmark, and (2) to compare current yield to historical yield potential. The first objective uses
an array of soil, climate, and topography variables with random forest to generate a more accurate
yield map. The updated yield map is compared to the existing yield map to ensure the addition
of climate and topography have increased yield prediction accuracy. The second objective will use
historical yield potential maps from 1688 and 1844 for comparisons with the newly developed yield
map. Comparing yield through time will help determine how advances in technology have driven
agriculture in Denmark.

2. Materials and Methods

2.1. Study Area

Denmark is a Northern European country lying between 54.3-57.5° N and 8.0-15.2° E with a
temperate climate. The mean annual temperature is 9 °C with summer days averaging to 17 °C and
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winter days averaging to 1 °C. Mean annual precipitation is 770 mm, with the west receiving more rain
than the east [27]. Multiple glaciations during the Weichselian geological period have resulted in highly
variable soil distribution and formation [28]. Soils are mainly loamy Luvisols in eastern and central
regions and sandy Podzols in western regions [29]. Moraine landscapes dominate the east and west, with
the west being glaciofluvial flood plains and older eroded moraine landscapes. Raised seabeds dominate
the north. The country covers 43,000 km? of area, and due to many glacial advances, topography is
relatively flat with a mean elevation of 32 m and a maximum elevation of 171 m.

2.2. Winter Wheat Fields

Winter wheat (Triticum aestivum L., spp. vulgare) yields were acquired from the Danish National
Field Trials managed by the Danish Agricultural Advisory Service [30]. The data from 876 fields from
1992 to 2018 were used in this study (Figure 1). Bornholm was excluded due to the lack of fields on the
island. Each field follows an experimental design that uses 4 or 5 randomized blocks (30 m? plot sizes)
with every block receiving a different level of mineral nitrogen fertilizer. The maximum yield (in kg ha~!)
per field was used in this study. The average mineral nitrogen fertilizer applied was 202 kg N ha~1.

Winter Wheat Fields
By Period
O 1992-1999
@ 2000-2009
@ 2010-2018

Figure 1. Locations of winter wheat fields (n = 876) from 1992 to 2018.



Agronomy 2020, 10, 395

40f17

Fields covered all climate regions and soil types in Denmark, as different locations were selected
each year. An average of 32 fields was selected each year (range between 14 and 60). Yield increased
gradually from 1992 to 2018 (Figure 2A). For every year, average yield increases by 70 kg ha~! (linear

regression: p-value < 0.001). Thus, the trend caused by differences between years was removed

(Figure 2B). This increase could be attributed to many factors (advances in farming technology,

better management techniques, higher annual temperature, etc.). The trend was removed by

subtracting a correction factor from each yield value. The correction factor is calculated by subtracting
the global average from the year’s average, resulting in different correction factors for each year.
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Figure 2. (A) Yield from winter wheat fields exhibiting a positive increase through the years and

(B) yield detrended by subtracting a correction factor (CF; yearly average — global average) from

individual fields to remove temporal trend.

2.3. Yield Modeling

Random forest (RF) is used to model winter wheat yields from field trials. This method is a
supervised decision tree algorithm that bags un-pruned trees by using randomly selected covariates at

each split [31]. The RF method grows a large number of trees from a set of independent observations.
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Randomness is used to select a variable at each split in the tree, and this variable is from a random
subset of all predictor variables. The RF model only generates the mean value for each tree, but
using quantile regression forest [32], the distribution of values predicted for each tree can be utilized.
The difference in values from quantiles (0.1 and 0.9) is used as the prediction interval for the model.
Both methods are implemented from the ranger package in R [33].

The RF model was generated 100 times on different training sets to determine the model
performance on different input data. Winter wheat fields are divided into training and test datasets.
The training dataset represents 75% of the original data (n = 657) and was used to build the model;
the test dataset represents the remaining 25% of the original data (n = 219) and was used to assess
model performance. The final winter wheat yield map was generated using all of the data. Variable
importance was calculated by averaging variable importance for all 100 model runs. The method used
for calculating variable importance within the RF model was the permutation method.

The RF model was compared to the existing winter wheat yield map of Denmark [26].
The previous method used the same source to attain winter wheat yield values as the RF model.
Values from the winter wheat yield map based only on soil data are extracted at each field location to
determine whether the RF model improved yield predictions. To ensure that the correction factor for a
year did not create a bias towards the RF model, uncorrected and corrected values were compared to
both the RF and soil-only models. Model performance was assessed using: mean squared error (MSE),
root mean squared error (RMSE), Lin’s concordance correlation coefficient (CCC), and coefficient of
determination (R?).

2.4. Predictor Variables

Covariates are needed to build the RF model to find the association between the environment and
yield. Covariates are divided into three groups (Table 1): soil (12 covariates), topography (12 covariates),
and climate (4 covariates). Covariates were chosen based on expert knowledge and previous studies
indicating the predictor variables affecting crop growth. All covariates were generated or resampled
to have a 30.4-m spatial resolution. Danish variables created for digital soil mapping typically have
a 30.4-m resolution because the digital elevation model (DEM) was derived from 1.6-m resolution
national LiDAR data and resampled to 30.4-m resolution [34].

Soil covariates were acquired from previous studies. Soil covariates were divided into two types:
continuous and categorical. The continuous soil covariates are: organic carbon percentage (depths
0-30 and 100-200 cm) [35], clay percentage (depths 0-30 and 100-200 cm) [36], drainage class [37],
depth to groundwater (60-100 cm) [38], pH [39], and winter wheat root zone capacity (based on a
previously developed pedotransfer function) [24]. The categorical soil covariates are: soil group [34],
geology [40], geo-region [36], and landscape [24]. Topography covariates are comprised of elevation
and 11 derivatives based on the DEM [34].

Climate variables are based on temperature, solar radiation, and precipitation. Daily mean
temperature in °C at 2 m above the ground and global solar radiation in MJ/m? were downloaded
from Aarhus University’s meteorological database [41]. Downloaded climate data were from 1985 to
2013 at a resolution of 40 km. Kriging was performed on 40-km grids to generate maps of: annual
number of growing days above 10 °C, average annual temperature, and global solar radiation during
the growing season (between 1 April and 31 October). The solar radiation map was combined with
a DEM solar radiation map, generated from the Area Solar Radiation tool in ArcMap, to create a
topographically corrected solar radiation map. The precipitation map was derived from average total
rainfall during the growing seasons between 1961 and 1990 [42].
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Table 1. Predictors used for random forest model of winter wheat yield.

Predictor Ranges/
Variables Classes Description Source
Soil
Carbon (0-30 cm) 0-55.86 Percent organic carbon in soil between 0 and 30 cm [35]
Carbon (100-200 cm) 0-22.22 Percent organic carbon in soil between 100 and [35]
200 cm
Clay (0-30 cm) 0-51.20 Percent clay in soil between 0 and 30 cm [36]
Clay (100-200 cm) 0-51.96 Percent clay in soil between 100 and 200 cm [36]
Drainage Class 1.104.61  Drainage classes between very poorly drained and [37]
very well drained soils
Soil Group 10 classes  Soil class map [34]
Geology 10 classes ~ Geological map [40]
Geo-Region 7 classes  Geographical regions map [36]
Groundwater 0-143.1 Depth to groundwater in meters [38]
Landscape 11 classes ~ Landform types [24]
pH (60-100 cm) 2.37-9.62  pH in soil between 60 and 100 cm [39]
Root Zone Capacity 11.2-1581.7 Weighted sum of winter wheat rooting depths [24]
using 5 depths in millimeters
Topography
Elevation 0-169.9 LiDAR produced elevation of land surface [34]1
Curvature (Plan) —1.60-2.51  Curvature perpendicular to the maximum slope
Curvature (Profile) —3.14-3.36  Curvature parallel to the maximum slope
Horizontal Distance to Channel Network 0-3223 Horizontal distance to the nearest waterbody
Mid-Slope Position 0-1 Relative vertical distance to mid-slope position
Multi-Resolution Valley Bottom Flatness ~ 0.01-10.62  Calculates depositional areas to identify flat valley
bottoms
Relative Slope Position 0-1 Slope position and the relative position between
valley and ridge
SAGA Wetness Index 7.30-18.90  Topographic wetness index with modified
catchment area
Slope 0-90 Slope gradient in degrees
Slope to Channel Network 0-47.63 Slope to the nearest waterbody
Valley Depth 0-86.04 Relative height difference to adjacent channel
Vertical Distance to Channel Network 0-111.45  Vertical distance to nearest waterbody
Climate
Grow Days 146.8-157.8  Number of days above 10 °C during the year [41]%
Precipitation 281.9-481.4 Precipitation between April and October in mm [42]
Solar Radiation 1802-3422  Global solar radiation between April and October [41]?
in MJ/m?
Temperature 7.90-8.92  Average yearly temperature in °C [41]?

! Topography variables are derivatives of the digital elevation model [34] and were generated in SAGA.
2 Raw data from AGRO Climate Database [41]; kriging was used on points to obtain the map.

2.5. Historical Comparison

Historical yield potential values are used to assess temporal changes of production through
Denmark. The 1688 ([23]) and 1844 ([43]) land registers have been mapped using previously digitized
data [44]. The proper data corrections were made to ensure both time periods aligned spatially.
Hard grain ha~! values from 1688 and 1844 were assigned to each parish from 1820. Land in the
registers was evaluated based on yield potential using a unit of measure called barrels of hard grain,
but different definitions were used to quantify hard grain in 1688 than in 1844. Thus, values were
normalized from 0 to 1 to determine relative differences. In both definitions, hard grain was based on
field measurements and evaluations which could be expressed in terms of production.

The three time periods (1688, 1844, and current) are compared to determine the spatial trend in
agricultural production. The winter wheat yield values were averaged for each parish and normalized.
The first two time periods assess yield potential, and the current values determine actual yield. While
the comparison is based on relative values, the distribution of values for each time period will indicate
how national farming has progressed. The comparisons will illuminate areas that have always been
viewed as highly productive and areas that have recently been developed due to advances in farming.
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3. Results and Discussion
3.1. Winter Wheat Yield Predictions

3.1.1. Random Forest Predictor Variables

The predictor variable importance indicates that using climate is crucial when predicting winter
wheat yield (Table 2). All four climate variables were within the top 10 predictor variables and
significantly correlated with yield. Organic carbon at a depth of 0-30 cm was significant and negatively
correlated with yield, but had low importance. Organic carbon was one of the three properties used in
the soil-only model, but neither organic carbon variable (depths 0-30 and 100-200 cm) was within the
top 15 predictors. Clay at a depth of 0-30 cm was used in the soil-only model and was an important
predictor for yield; however, clay at a depth of 100-200 cm was also crucial in the RF model, but was
not utilized in the soil-only model. Winter wheat roots have been shown to reach 2 m depth [45],
indicating subsoil properties are necessary for predicting winter wheat yield. This shows that the
soil-only model might be too simple to accurately predict yield values.

Table 2. Top 15 predictors ordered by importance in the random forest model using permutation as
the method to determine variable importance. Correlation is indicated by a + for positive correlation,
- for negative correlation, and C for categorical variable. A bold + or - indicates whether predictors are
significantly correlated with winter wheat yield (linear regression: p-value < 0.05).

Rank Predictor Variables Importance Correlation

1. Temperature 100.0 +
2. Clay (0-30 cm) 91.6 +
3. Grow Days 77.8 +
4. pH (60-100 cm) 72.5 +
5. Precipitation 70.5 -
6. Clay (100-200 cm) 63.4 +
7. Geology 58.7 C
8. Drainage Class 57.5 +
9. Soil Group 529 C
10.  Solar Radiation 49.0 +
11. Root Zone Capacity 471 -
12. Geo-Region 439 C
13. Elevation 42.8 -
14.  Landscape 40.7 C
15.  Groundwater 33.7 -

Topography variables did not have a large influence on yield predictions. Elevation was the
only variable within the top 15 variables. While some of the topography variables were significantly
correlated with yield, the overall importance of these variables was low. Contrary to our results,
studies have found that topographic position has a crucial effect on wheat yield. While topography
explained a lower amount of variation in yield than soil properties, Kravchenko and Bullock [46]
indicated elevation was the most influential topographic variable on yield. However, due to the Danish
landscape being relatively flat, the addition of topography variables does not play a large role in yield
predictions. With soil being an important factor for predicting yield, and topography being a large
component in modeling soil, topography is indirectly associated with yield. All of the individual soil
properties used in this study have incorporated topography when being modeled and mapped. Thus,
adding topography variables alone is likely redundant and seems to have only made the RF model
more complicated and computationally expensive.

The addition of climate variables in modeling yield is an important aspect many researchers are
focusing on, due to shifts in climate patterns. In varying climate simulations, yield was predicted to
decrease with an increase in temperature variability, while changes in yield were mediated by soil type
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when precipitation was varied [47]. In yield forecasting, models incorporating seasonal temperature
and precipitation were able to reliably predict yield variability for 25-38% of the globally harvested
area before harvesting [48]. Kristensen et al. [49] stated winter wheat yield in Denmark will likely
decrease with the projected climate change and Webber et al. [50] concluded the same results but for all
of Europe. Yield has been predicted to decrease by 550 kg ha~! from 1985 to 2040 with varying degrees
of yield reduction depending on the location and soil type. Using the same field trial data source,
Qrum et al. [51] found many aspects of climate were important for predicting winter wheat yield in
Denmark. Average temperature and precipitation, during certain months on varying soil types, impact
plant growth significantly [52]. Besides climate variables, atmospheric carbon dioxide (CO,) should be
included in modeling winter wheat yield because the increase in CO, and the resulting interaction
with environmental variables are expected to increase yield [53]. Broberg et al. [54] elevated CO, levels
from 372 to 605 ppm and found winter wheat yield increased by 26%. While the seasonal climate
during the growing period does not change drastically in Denmark, climate variables and CO, need to
be included in future yield models.

Table 3. Model performance measures for soil-only and random forest models.

Model MSE RMSE ccc R?
. Mean (SD) 3.93 x 10° (2.3 x 10%) 1982 (60) 021(0.03)  0.20 (0.04)
Soil Only Model Range 3.41-451 x 106 1850-2120 0.14-0.28 0.11-0.31
Mean (SD) 1.58 x 106 (1.49 x 10°) 1256 (60) 038(0.03)  0.26(0.05)
Random Forest Model Range 1.28-2.13 x 108 1130-1460 0.31-0.45 0.18-0.37

MSE = mean squared error; RMSE = root mean squared error; CCC = Lin’s concordance correlation coefficient;
SD = standard deviation.

3.1.2. Model Comparison

The RF model used for predicting winter wheat yield performed better than the previous winter
wheat yield model based only on soil properties in all model performance evaluations (Table 3).
The correction factor applied to the winter wheat values did not bias the RF model, since the soil-only
model performed better when comparing to corrected values to uncorrected values. The RF model’s
MSE was half the one of the soil-only model, and the RF model’s RMSE was 726 kg ha~! lower than
that of the soil-only model. Lin’s CCC constitutes a measurement for both precision and accuracy [55],
and a valuable way to measure agreement between two methods measuring the same variable.
The coefficient was ranked poor for the soil-only model (0.21) and nearly ranked fair to good (0.38)
for the RF model using the Fleiss interpretation [56]. The coefficient of determination (R?) is 0.06
higher for the RF model than for the soil-only model. This indicates the RF model explains 6% more
variation than the previous model. Looking at model performances, while the R? did not increase
drastically, the incorporation of climate and topography are beneficial in modeling winter wheat yield,
as indicated by every other performance measurement.

Distributions of the predicted yields for both models do not account for extreme values, as seen
in the raw data (Figure 3). The RF model did not perform well when calculating extreme values,
but the predictions are centered around the observed data, whereas the soil-only model consistently
predicts low yields. The ability to predict extreme values could be improved by incorporating farm
management data. Integrating information on irrigation and the previous crops planted have shown to
be significant factors that impact yield [51]. However, generating national maps of farm management
would be time-consuming and expensive. The placement of field trials could be another reason why the
model does not have a higher R? value and topography does not have a large contribution. The range
of slope for agricultural land in Denmark is between 0 and 34°, while the range of slope for the field
trials is between 0 and 12°. The fields change every year but the placement is not completely random,
resulting in a biased sampling scheme that does not consider extreme soil and topography locations.
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Figure 3. Comparison of the soil-only and random forest models using a random test dataset (n = 219;
25% of points).

Other studies have compared the use of ML algorithms to linear regressions in crop yield studies.
Linear regression has out-performed neural networks when using only one input, but neural networks
consistently out-performed linear regression when multiple inputs were used [57]. Random forest
has been found to produce smaller RMSE values than linear regression when dealing with regional
and global scale crop yield predictions [58]. In a study calculating solar radiation from both statistical
models and neural networks, the neural networks provided the best estimates on the training data
but performed poorly in a test site with different weather conditions. In contrast, the statistical
models achieved adequate results in both the training and test sites [59]. The ability to find complex
relationships between multiple inputs is the benefit of ML algorithms; however, these algorithms do
fall short when applied to datasets with few inputs or when new data arises in test datasets.

The final map from the RF model along with prediction interval (difference in quantiles 0.1 and
0.9) is shown in Figure 4A,B. The pattern indicates that the best yield for winter wheat is in the east
with loamy soils and the worst in the west with fluvial sands. This result is consistent with the soil
fertility map from 1844 [60] and the existing yield map (Figure 4C). Areas with the highest and lowest
yields also displayed the lowest prediction intervals. This indicates that these areas are typically stable
and do not fluctuate as much as other areas. The stability in yield prediction is probably due to soil
quality either being good or poor, resulting in consistent yield no matter the climate. The largest
prediction intervals are associated with areas that have intermediate yield values. The large prediction
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interval likely indicates that the yearly fluctuations are greatest in these areas, since the soil quality is
average and not a reliable buffer. Thus, climate would have a larger influence on yield.

The two yield maps were normalized between 0 and 1 and subtracted from each other (Figure 4D).
The maps were normalized because the soil-only model predicts negative values in certain areas.
These negative values appear for locations where the organic carbon content is below 1% and much
smaller than the clay and silt contents. Thus, the soil-only yield map needed to be normalized. The RF
model predicted higher values in the east and lower values in the west compared to the previous
model. Areas with average yield values are roughly in the same location in both models. The main
differences are in the extreme values where the yield is either the highest or lowest. As seen in
Figure 4C, the previous model generates a smoother map because only three soil properties were used
in the model. The soil-only model originated from work that was focusing on the effects soil organic
matter has on crop yield when optimal nitrogen was allocated [26], creating a model that did not
incorporate environmental factors. The RF model has sharper boundaries because of variables that
take into account glacial boundaries. The lowest values in the RF model from the middle of Jutland
are indicative of the boundary between the young moraine and outwash plain landscape types [24].
The fine soil particles (clay and silt) are typically above 20% in the young moraine, resulting in a larger
supply of plant available water, and below 10% in the outwash plain, resulting in a smaller supply of
plant available water. These differences in soil genesis and soil texture lead to large yield differences in
Jutland. The incorporation of variables explaining climate and geology into the model are crucial for
depicting the actual pattern seen, rather than the simplified version only including soil.

3.2. Historical Comparisons

The three time periods are mapped by parish in Figure 5. Spatial patterns are similar for the first
two time periods (1688 and 1844). Comparing the two historical periods, areas in the east had higher
yield potentials in 1844 than 1688. Both time periods were similar in the west, and no clear pattern
is seen in the north regarding which time period had a higher yield potential. The differences are
similar between current yield and both historical yield potentials. The differences indicate that the
changes between 1844 and 1688 are minor compared to the drastic changes in current yield. However,
areas that have been the least productive are constantly the least productive. Although advances in
technology have made the western part of Denmark more productive, the soils in the west are still far
less productive than the fertile soils in the east.

Observing the overall trend in parish production, current national yield is more evenly distributed
than in previous time periods (Figure 6). In 1688 and 1844, the data were skewed towards a large
portion of parishes having low yield potential and a few having high yield potential. The slight
increase in yield potential from 1688 and 1844 could be attributed to the large land reform between the
two time periods. During this land reform in the late 18th century, the land that was once owned by
the king, church, and manors, and farmed by peasant farmers, was redistributed to the people to allow
farmers to cultivate their own land. The increase in agriculture productivity has been associated with
the peasant emancipation and the reforms [61]. As the years have progressed, Denmark has become
more productive. Current yield is evenly spread across parishes from low to high, with most of the
parishes having average yields.
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Figure 4. (A) Yield map of winter wheat produced from random forest model. (B) Prediction interval
(quantiles 0.9-0.1) of random forest model. (C) Yield map from soil-only model. (D) Comparison
between the two models (random forest-soil-only model).
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ordered by normalized values from smallest to largest for each time period separately.

The differences in historical yield and current yield could be attributed to new cultivars,
technology spreading, and climate differences. Selective breeding has increased yield through the years
with no yield plateau being discovered [62]. The introduction of machinery for ploughing, irrigation,
and harvesting, doubled the agricultural capital in Denmark [63]. With drainage pipes and marling
being introduced in the mid-19th century, land improved for agriculture, and production quantities
grew by 75% [63]. Currently, about 50% of agricultural land is drained in Denmark [64], resulting
in more area to be harvested and higher yields compared to historical yield potential. From 1930 to
1970, tile drains were mainly being placed in wetland areas, increasing the amount of arable land
in parishes [65,66]. One qualifier to be the lowest class of soil fertility in the historical registers was
waterlogged soil [23]. Draining waterlogged soils would cause these soils that once were given a low
hard grain value to be given a much higher hard grain value. The loamy soils in southeastern Denmark
are now highly productive areas due to the introduction of tile drains. The increase in CO; levels
through the years can contribute to the increase in yield through time. The CO; level during the 18th
century was around 280 ppm and current day is around 400 ppm [67]. The change in temperature is
also a cause for differences between historical and current production. The temperature during 1875 to
1900 was around 2 °C lower compared to average annual temperature data in Denmark from 2010 to
2017 [68]. Advances in crop genetics, the introduction of new technologies and management practices
after the 1844 register, and higher ambient CO; levels and temperatures, are major reasons why the
current yield values are larger than historical values.

4. Conclusions

The winter wheat yield map of Denmark generated in this study incorporates soil, climate,
and topography to produce a more accurate yield prediction than previous efforts. Using a machine
learning algorithm and adding climate data were major aspects that helped increase the variation
explained in yield predictions compared to the previous statistical model. The previous effort,
only using three topsoil properties to model winter wheat yield, was too simple to correctly predict



Agronomy 2020, 10, 395 14 of 17

yield. The random forest model did not predict extreme values well, but the values were centered
around the mean. Even though extreme values will not be predicted, the new winter wheat yield
map could be applicable for future yield predictions due to the centered values being more reliable
predictions. The ease with which machine learning allows additional data also means the map can be
updated more readily when new data are collected.

Comparing the current yield to historical yield potentials from the 17th and 19th centuries
provided a way to determine the spatiotemporal trends in Danish agriculture. The differences in yield
potential between the historical data are minor when comparing the current productivity to historical
periods. The advances in agriculture have proven to out-perform what was once thought of as a field’s
yield potential. The agriculture potential will keep rising as technological breakthroughs continue to
occur. Since predicting how technology and new cultivars will change yield potential is challenging,
future work should use climate projections when creating yield maps to make the predictions viable
in future years. The current yield map, while better than the previous soil-only model, will likely be
obsolete in future years because of changes in climate. Thus, the trend in yield changes between time
periods should be evaluated so that future yield predictions incorporate temporal trends, generating
predictions that last longer into the future.
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