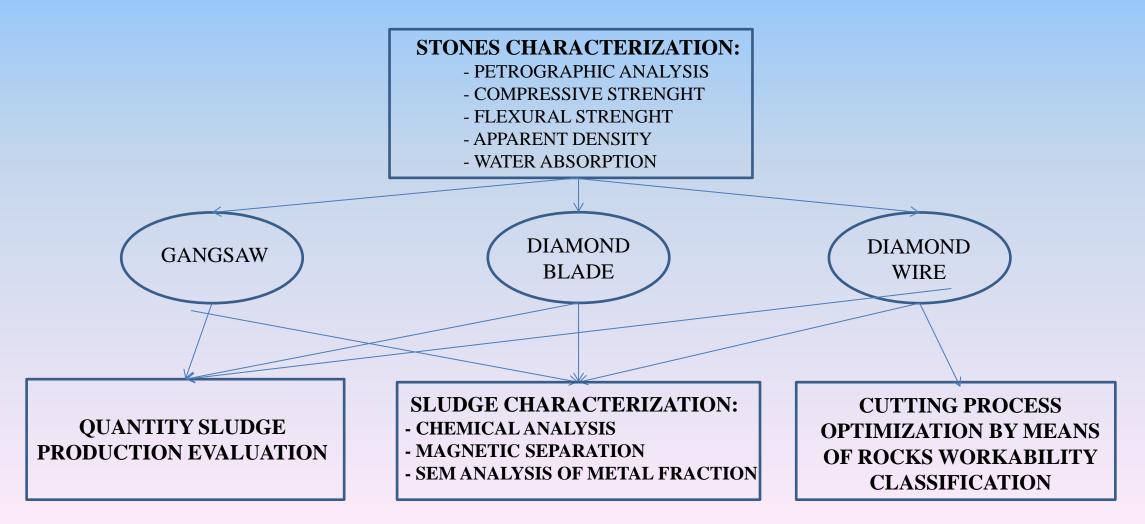


Ornamental stone cutting processing and sludge production evaluation with the goal of ending waste.


Lorena Zichella, R. Bellopede, P. Marini Department of Environment, Land and Infrastructure, Politecnico di Torino

AIM OF THE RESEARCH:

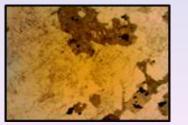
Identify the best cutting techniques for processing of stones in order to obtain a good efficiency process, optimize the recovery process, increase the economic advantages and evaluate the possible reuse of the sludge through a proactive waste management strategy.

STONE CHARACTERIZATION

SERIZZO ANTIGORIO

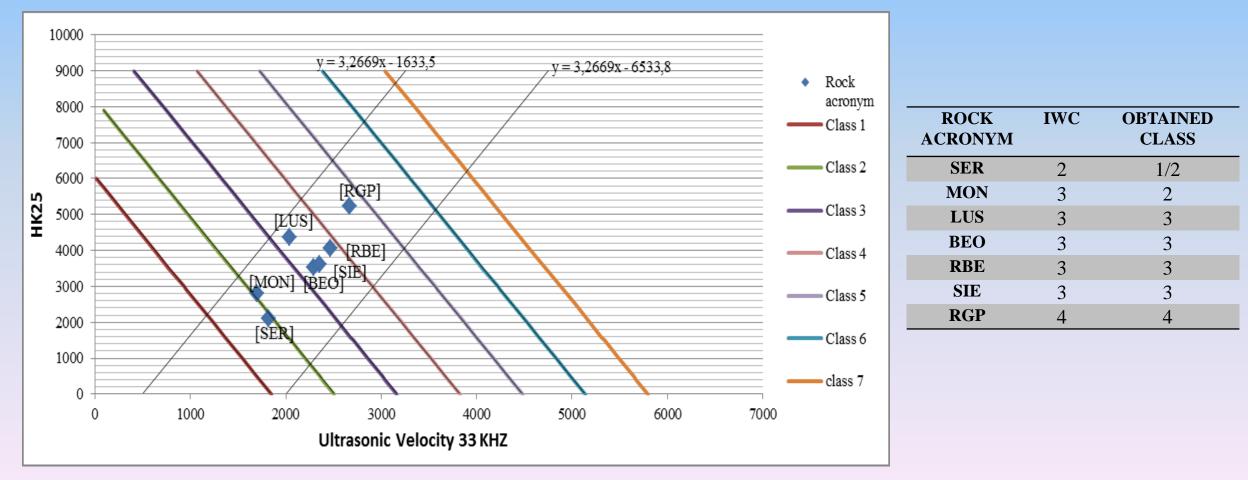
LUSERNA

WHITE BEOLA


ROSA BETA

GRIGIO PERLA

SIENITE



Samples code	Districts	Stones type	Main minerals composition	Cutting methodologies
MVG	Verbania	Serizzo	Quartz, Plagioclase, Ortoclase; Biotite; Muscovite; Epidote.	Gangsaw
DVM	Verbania	Beola, Serizzo, Granite	Quartz; Plagioclase, Ortoclase, Alkaline Feldspar; Biotite; Muscovite, Piroxen.	Gangsaw – Diamond blade – Diamond wire
TVD	Verbania	Serizzo, marble	Quartz, Plagioclase, Ortoclase; Biotite; Muscovite; Epidote; calcium carbonate.	Diamond blade
CVW	Verbania	Serizzo	Quartz, Plagioclase, Ortoclase; Biotite; Muscovite; Epidote	Diamond wire
GVM	Verbania	Beola, Granite, Serizzo, Luserna, Sienite	Quartz; Plagioclase, Ortoclase, Alkaline Feldspar; Biotite; Muscovite, Piroxen, White mica; Chlorite	Gangsaw - Diamond blade - Diamond wire
PTD	Torino	Gneiss	Quartz; Plagioclase; Alkaline Feldspar; White mica; Chlorite; Epidote	Diamond blade
СТД	Torino	Granite	Quartz; Plagioclase, Orthoclase, Biotite.	Diamond blade
TTW	Torino	Diorite, Sienite, Granite, Luserna, Serizzo, Beola	Quartz; Plagioclase, Ortoclase, Alkaline Feldspar; Biotite; Muscovite, Piroxen, White mica; Chlorite	Diamond wire
MCG	Cuneo	Luserna stone	Quartz; Plagioclase; Alkaline Feldspar; White mica; Chlorite; Epidote.	Gangsaw
MCD	Cuneo	Luserna stone	Quartz; Plagioclase; Alkaline Feldspar; White mica; Chlorite; Epidote	Diamond blade

ROCKS WORKABILITY CLASSIFICATION FOR CUTTING OPTIMIZATION UPV + KNOOP

Prediction of stone - diamond wire interaction: crucial for the extractive sector, both to improve the productivity and efficiency of quarry work and to avoid dangerous and expensive endeavours of cutting when an unknown stone has to be introduced in the plant

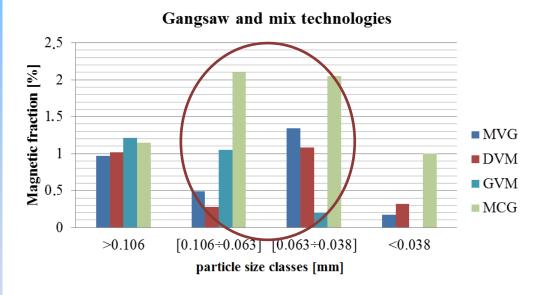
Based on the research carried out with the European EASE R3 project, reference: "Diamond-wire cutting: a methodology to evaluate stone workability" Zichella et. al., 2017

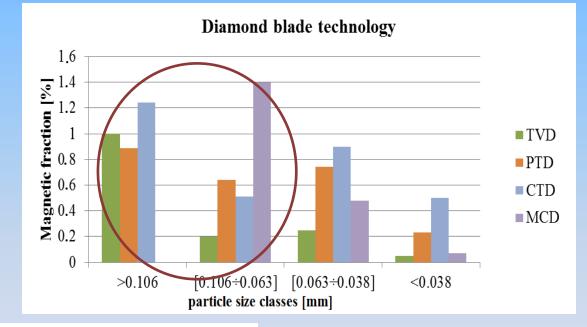
QUANTITY SLUDGE PRODUCTION EVALUATION

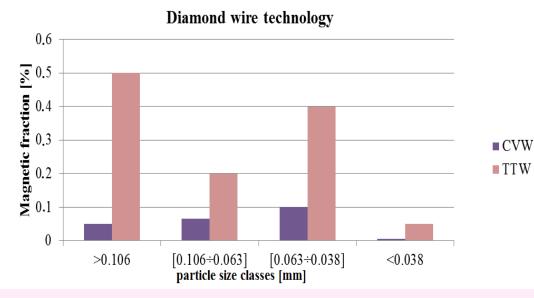
Block dimension [m]		1.5*3*2	
Block length [m]		2	
Rock specific weight [t/m ³]		2.7	
m ² for one slab [m ²]		4.5	
Slab thickness [cm]	2	3	4
Slab volume [m ³]	0.09	0.135	0.18
Slab weight [t]	0.243	0.364	0.486

Starting data considered for the calculation of lost materials.

	SLABS 2 cm	SLABS 3 cm	SLABS 4 cm
GANGSAW lost material [%]	30	22	17
GANGSAW Number of slabs for block	70	52	41
GIANT DIAMOND BLADE lost material [%]	43	34	28
GIANT DIAMOND BLADE Number of slabs for block	57	44	36
DIAMOND WIRE lost material [%]	29	22	17
DIAMOND WIRE Number of slabs for block	71	52	41


	STARTING DATA			
		SLABS 2cm	SLABS 3 cm	SLABS 4cm
	blade segment thickness [mm]	4.8		
GANGSAW	grit diameter [mm]	n] 0.4		
	cutting width + blade distance[mm]	28.4	38.4	48.4
	disk diameter [mm]	3500		
GIANT DIAMOND BLADE	segment thickness [mm]	14,2		
	cutting width + slab thickness [mm]	35.2	45.2	55.2
	beads diameter [mm]	7.3		
DIAMOND WIRE	cutting width + slabs thickness[mm]	28.3	38.3	48.3


Diamond wire produces an amount of waste, similar to the gangsaw technology. However, diamond wire technology offers many advantages compared to gangsaw. One of the advantages of multiwire respect gangsaw is the down feed speed. Multiwire speed is more than four times compared to gangsaw speed. This aspect is linked to a higher production of slabs for the diamond wire. Furthermore, this type of technology uses tools that are more wear resistant than gangsaw.


SLUDGE CHARACTERIZATION

Magnetic separation

- Gangsaw and diamond blade technologies have a high percentage of metals concentration (magnetic fraction) respect diamond wire;
- The type of stone cut and its workability affects the wear of the tools and therefore the concentration of metals in the sludge (percentage of concentration of metals present in the sludge is higher in the case of stones more difficultly workable);

- Gangsaw and mix technologies magnetic distribution trend of magnetic fraction is higher for particle size class ranges [0.106÷0.063] and [0.063÷0.038].
- Diamond blade and diamond wire magnetic distribution trend is higher for particle size classes > 0.038 mm.
- The lowest class of 0.038 mm, for all technologies, is the class with the lowest concentration of magnetic fraction. In case of separation as a pre-treatment, it could have a good efficiency, due to the packing effect for the too fine material.

CONCLUSION

- <u>Sludge quantity evaluation</u>: feasibility of possible recovery depend on quantity of secondary raw material involved.
- <u>Rocks workability classification</u>: inexpensive and simple method to predict cuttability prior to cutting, and to predict the wear of tools and consequent production of sludge with less content of metals.
- <u>Magnetic separation</u>: _____ as characterization for a correct future recovery

as pre-treatment to decrease metals content

		small company	medium company
	sludge production [t/year]	1,800	7,800
	landfill disposal cost [€/year]	23,400	101,400
	transport cost [€/year]	21,600	93,600
waste as inert	total cost sludge management [€/year]	45,000	195,000
waste as mere	company turnover [€/year]	466,560	2,021.76
	cost incidence of sludge management [%]	10	10
	landfill disposal cost [€/year]	144,000	624,000
	transport cost [€/year]	21,600	93,600
waste as special non-	total cost sludge management [€/year]	165,600	717,600
hazardous waste	company turnover [€/year]	466,560	2,021.76
	cost incidence of sludge management [%]	35	35

ECONOMIC EVALUATION

Thank you for the attention !!!

DIATI - Department of Environment, Land and Infrastructure Engineering Politecnico di Torino, Italy

WEB SITE.: http://areeweb.polito.it/rawmaterials/index_en.html

 (\mathbf{i})

EGU EUROPEAN GEOSCIENCES UNION GENERAL ASSEMBLY 2020 VIENNA | AUSTRIA | 4-8 May