

### Compound Specific Stable Sulfur Isotope Analysis ( $\delta^{34}$ S and $\delta^{33}$ S) of Organic Compounds Using Gas Chromatography Hyphenated with Multiple Collector Inductively Coupled Plasma Mass Spectrometry (GC-MC-ICPMS)

Steffen Kümmel, Faina Gelman, Axel Horst, Harald Strauss, Matthias Gehre

EGU2020 – Sharing Geoscience Online Session BG2.8 06.05.2020

© Authors. All rights reserved

# **Compound Specific Stable Sulfur Isotope Analysis**

#### Isobaric interferences and background

- Isobaric interferences (e.g. <sup>16</sup>O<sup>16</sup>O<sup>+</sup>, <sup>32</sup>SH<sup>+</sup>) can falsify signals of <sup>32</sup>S and <sup>33</sup>S
- Normally avoided by separation of sulfur masses from interferences by operating in medium or high resolution; not possible in low resolution  $\rightarrow$  thus, investigations concerning isobaric interferences carried out in medium resolution
- GC-MC-ICPMS  $\rightarrow$  dry plasma conditions  $\rightarrow$  significant reduction of interferences  $\rightarrow$  main factor influencing interference intensity and signal sensitivity of <sup>32</sup>S and <sup>33</sup>S is sample gas flow  $\rightarrow$  sample gas flow adjusted to maximal signal to noise ratio (Fig. 1A) and not to maximum sensitivity (Fig. 1B)
- Result: <sup>16</sup>O<sup>16</sup>O<sup>+</sup> only a minor abundance, <sup>32</sup>SH<sup>+</sup> was insignificant



© Authors. All rights reserved

Figure 1: Mass scans of <sup>32</sup>S (black), <sup>33</sup>S (green) and <sup>34</sup>S (red) at medium resolution during inhalation of  $SF_6$ . A: mass scan at a sample gas flow of 1.31 L/min. At this flow the signal-to-noise ratio was highest and interferences at mass 32 are very B: mass scan at a sample gas flow of 1.4 L/min. The signal is close to maximum and interferences are visible

www.ufz.de

# **Compound Specific Stable Sulfur Isotope Analysis** Analytical precision

- Tested from 60 to 1500 pmol S injected on-column → signal sizes of 15 to 350 V for mass 32
- Precision (low and medium mass resolution) ranged from <0.25 mUr (<sup>33</sup>S) and <0.1 mUr (<sup>34</sup>S) for 60 pmol S to <0.1 mUr (<sup>33</sup>S) and <0.05 mUr (<sup>34</sup>S) for 400 pmol of S (ca. 100 V signal)
- Precision for <sup>34</sup>S similar to previous reports<sup>1</sup>
- Precision for <sup>33</sup>S of CSIA method not yet been reported but achieved precision of <0.1 mUr for <sup>33</sup>S only requires 400 pmol S which may be sufficient for multiple applications



**Figure 2**: Analytical precision for <sup>33</sup>S and <sup>34</sup>S for different amounts of sulfur given in pmol. Each data point indicates the standard deviation of five replicate measurements.

# **Compound Specific Stable Sulfur Isotope Analysis** Linearity

- δ<sup>33</sup>S and δ<sup>34</sup>S showed a linear relationship with a slope of about 0.004 and 0.008, respectively → average change of 0.4 mUr (δ<sup>33</sup>S) and 0.8 mUr (δ<sup>34</sup>S) per 100 V measured for mass 32 (Fig. 3A)
- To avoid linearity effects → usage of internal reference compounds SF<sub>6</sub> (gas phase analyses) and thiophene (dissolved organics)
- Internal reference compound was adjusted to analyte → similar signal sizes of internal reference and analyte (maximum difference ±20%)
- Internal reference compound was set to zero at each peak size and analyte of same peak size was referenced against them (Fig. 3B)



© Authors. All rights reserved

Figure 3: Relationship between signal size and isotopic composition ( $\delta^{34}$ S versus signal). A: All isotopic ratios of tetrahydrothiophene (THT; signal sizes of 17 to 170V) were referenced against the isotopic ratio of thiophene (internal reference compound) with a 17 V signal size  $\rightarrow$  consequence: linear relationship between signal size and  $\delta^{34}$ S of THT.  $\delta^{34}$ S shifts by about 1.2 mUr from signal sizes of 17 to 170V. B: THT is referenced against thiophene of similar signal sizes only  $\rightarrow$  consequence:  $\delta^{34}S$  become independent of signal size within analytical uncertainty.

### **Compound Specific Stable Sulfur Isotope Analysis** Method evaluation and referencing of compounds versus V-CDT

© Authors. All rights reserved

- Characterization of organics versus V-CDT done by two point normalization using international reference materials IAEA-S2 and IAEA-S3 (Ag<sub>2</sub>S) converted to SF<sub>6</sub>; quality of normalization was confirmed by analyzing IAEA-S1 as SF<sub>6</sub> (low and medium resolution were tested)
- Needed, because adequate organic sulfur standards not available; additional problem → no δ<sup>33</sup>S consensus values of IAEA standards are yet assigned, but there are δ<sup>33</sup>S values available in literature<sup>2</sup>
- Result: no significant difference between δ<sup>33</sup>S and δ<sup>34</sup>S obtained at low and medium resolution and good quality of the normalization (Tab. 1)

**Table 1**:  $\delta^{33}$ S and  $\delta^{34}$ S values of international reference materials (IAEA) and industrially produced organic compounds.

| Compound                       | δ33S [mUr]<br>normalizied | δ33S [mUr]<br>published | δ34S [mUr]<br>normalizied | δ34S [mUr]<br>consensus |
|--------------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| IAEA-S1                        | -0.07±0.18                | -0.05 <sup>2</sup>      | -0.16±0.10                | -0.30 <sup>2</sup>      |
| IAEA-S2                        | 11.57±0.12*               | 11.57 <sup>2</sup>      | 22.62±0.08*               | 22.70 <sup>3</sup>      |
| IAEA-S3                        | -16.61±0.16*              | -16.61 <sup>2</sup>     | -32.49±0.09*              | -32.30 <sup>3</sup>     |
| SF <sub>6</sub> (in-house)     | 1.16±0.15                 | -                       | 1.87±0.10                 | -                       |
| Dimethyl<br>disulfide (DMDS)   | 8.60±0.17                 | -                       | 16.97±0.07                | -                       |
| Thiophene (THI)                | -1.74±0.18                | -                       | -3.35±0.07                | -                       |
| Diethyl sulfide<br>(DES)       | 6.36±0.20                 | -                       | 12.54±0.17                | -                       |
| Tetrahydro-<br>thiophene (THT) | 4.13±0.17                 | -                       | 7.82±0.15                 | -                       |

 $\delta^{33}$ S and  $\delta^{34}$ S include values measured at low and medium resolution which were indistinguishable. Isotopic reference materials used as anchors for two point normalization to V-CDT scale are indicated with an asterisk.

3 Mann, J. et al. Rapid Commun. Mass Spectrom, 2009; 23: 1116–1124