

Laboratoire d'Hydrologie et de **Geochimie de Strasbourg (LHyGeS)** 1 rue Blessig 67000, Strasbourg, France Université de Strasbourg, ENGEES, CNRS

Contact: guillaume.drouin@unistra.fr

G. Drouin, M. Fahs, B. Droz, G. Imfeld & S. Payraudeau

Context & gap of knowledge

- Pesticide contaminations are ubiquitous in surface waters, including in rivers⁽¹⁾
- The Sediment Water Interface (SWI) is a highly reactive boundary of rivers where degradation occurs⁽²⁾
- Increased residence time
- Favourable redox conditions for microbial and chemical degradation
- Its reactivity is mainly controlled by transport of dissolved species into the sediment bed⁽³⁾
- Hydrological forcing
- Horizontal water velocity (river flow)
- Vertical water fluxes (ground-surface)
- Geomorphologic structures
- Large scale (meanders, dams, etc.)
- Small scale (bed forms, vegetation, etc.)
- Modelling transport at a fluid-porous interface is still challenging⁽⁴⁾

Aims

1/ Developing a physically-based reactive transport model at the SWI:

- Without interfacial conditions
- Horizontal & Vertical fluxes

2/ Investigating the effects on solute transport of:

- A representative hydrological forcing
- Sorption

Ongoing

3/ Understanding the relationship between transport and degradation at the interface

Modelling transport at the SWI

Advanced numerical methods are coupled in an innovative way to solve the governing equations without any specific treatment of interfacial conditions.

- Navier-Stokes (NS)
- Darcy-Brinkman (DB)

- Diffusion
- Dispersion + advection

Non conforming **Crouzeix-Raviart** finite elements

Discontinous Galerkin finite element

Reactivity:

- Sorption
- $s_1 \bullet \frac{\rho}{\epsilon} \frac{\partial u}{\partial t} + s_2 \bullet \frac{\mu}{K} u + s_3 \bullet \frac{\rho}{\epsilon^2} (u\nabla) u s_4 \bullet \frac{\nu}{\epsilon} \nabla (\nabla u) \nabla p = -\rho g \nabla z$

 (s_1, s_2, s_3, s_4) are used to switch from NS to DB, (u, p) are the state variables for water velocities and pressure and (ρ, ϵ, ν, K) the porous medium characteristics

Tracer experiments

Tracer experiments are used to investigate transport of dissolved species and validate the model

Tracers:

Conservative - NaClAdsorptive - Azo dye $(K_d = 7.7mL.g^{-1})$

Flow:

 $1.5 < u < 4.5 \ cm.s^{-1}$ 150 < Re < 500

Configuration:

Export - groundwater Incorporation - surface water

The effects of water flow and sorption on transport at the SWI

Water flow controls mass exchange rate but not capacity alongside a bounded river transect. Sorption favours pollutant removal by the sediment bed

- Export = incorporation
- Water flow dependancy

Temporal rates:

Varying exchange rate & Penetration/export pace Time required to reach 90%

of the equilibrium:

 $2 < T_{90\%} < 30 \ h$

X Equivalent length scaling Constant exchange capacity

 $L_{eq_{90\%}} \approx 2000 \ m$

Sorption effect

Enhanced/ hampered mass exchange Limited penetration depth

sink

Model validation

Simulations fit well with experimental data & reveal that dispersive transport is dominant

Numerical details

< 0.01%Closed mass balance Mesh size sensitivity negligible < 2mm

In-stream degradation of

pesticides still unresolved

Parameter sensitivity

Interface layer thickness

Grain size = velocity penetration

Dispersion coefficient

Dispersion driven transport

$$\begin{cases} 10^1 < Pe < 10^6 \\ \frac{D_{eff}}{D_m} \approx 10^1 \end{cases}$$

Conclusions & Perspectives

A promising tool to assess in-stream degradation at large scale

Suitable model for transport at the SWI For conservative and sorptive species

→ Degradation processes ?

 Sorption limits deep contaminations Contaminants sorb on the upper sediment

→ Influence on degradation ? Flow independant mass exchange Contaminant source (surface/groundwater)

Exchange capacity per river length

→ Simplified risk assessment in rivers ?

References

- (1) de Souza et al., «Occurrence, impacts and general aspects of pesticides in surface water: A review», Process Safety and Environmental Protection (2020).
- (2) Krause et al., «Ecohydrological interfaces as hot spots of ecosystem processes», Water Resources Research, 2017.
- (3) Byrne et al., «Diffusive equilibrium in thin films provides evidence of suppression of hyporheic exchange and large-scale nitrate transformation in a groundwater-fed river», Hydrological Processes, 2015.
- (4) Cardenas, Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus, Water Resources Research, 2015.