Characteristics of earthquake ruptures and dynamic off-fault deformation on propagating faults

Authors: **Simon** Preuss, Jean Paul Ampuero, Luca Dal Zilio, Taras Gerya, **Ylona van Dinther**

© Authors. All rights reserved

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

EGU 4th of May 2020

Pt. 1 — Complex fault evolution

[Kim et al., 2004]

•

© Preuss et al. All rights reserved

STM 1 - *Seismo-Thermo-Mechanical Modeling* [van Dinther et al., JGR, 2013]

STM 2 - Rate-and-state friction [Herrendörfer et al., JGR 2018]

Conservation

of mass

of momentum

Rheology

Visco-elasto-plastic

Plastic yielding

 $\sigma_{
m yield}$

Methods

I2ELVIS - 2-D continuum-based Finite-difference code [Gerya and Yuen, PEPI, 2007]

continuum-based invariant RSF

$$d = \tau_{II} = \mu P + C = \left[\mu_0 + a \ln\left(\frac{V}{V_0}\right) + b \ln\left(\frac{\theta V_0}{L}\right) \right] P + C$$
$$\frac{d\theta}{dt} = 1 - \frac{V - \theta}{L}$$

[Dieterich, 1978,

- $\tau_{\rm II}$ second invariant of stress tensor
- P pressure
- V plastic slip rate
- V₀ reference slip rate

- μ_0 static friction coefficient
- θ state
- L characteristic slip distance

long-term fault evolution + spontaneous earthquakes ruptures

Presentation objectives

1) Complex evolving fault geometries and earthquake ruptures on propagating faults

2) Complex earthquake rupturing in the Ridgecrest faulting case

© Preuss et al. All rights reserved

Model setup

3 new ingredients

- New dynamically adaptive measure of fault width
- Plastic strain weakening of bulk rateand-state friction parameters L and b
- 2.5D approximation

1 - Complex fault geometries

2.5D Model setup

Aseismic vs. seismic growth 1 - Complex fault geometries

© Preuss et al. All rights reserved

1 - Complex fault geometries

Role of the fault angle

1) Complex evolving fault geometries and earthquake ruptures on propagating faults

- Fault growth predominantly aseismically
- Plastic off-fault dissipation strongly dependent on initial fault orientation
 - Hypothesis: Non-optimality causes structural complexity

2) Outlook: Complex earthquake rupturing in the Ridgecrest faulting case

Seismic contribution to localize and steepen the fault angle + causing off-fault deformation

© Preuss et al. All rights reserved

1) Complex evolving fault geometries and earthquake ruptures on propagating faults

- Fault growth predominantly aseismically
- Seismic contribution to localize and steepen the fault angle + causing off-fault deformation Plastic off-fault dissipation strongly dependent on initial fault orientation Hypothesis: Non-optimality causes structural complexity

2) Complex earthquake rupturing in the Ridgecrest faulting case

2 - Outlook

Ridgecrest 2019 earthquake sequence

Preuss, 2020. PhD Thesis @ ETH Zurich 11

2 - Outlook

Quaternary model

XS

Preuss, 2020. PhD Thesis @ ETH Zurich 12

2 - Outlook

Post-Ridgecrest model

© Preuss et al. All rights reserved

Preuss, 2020. PhD Thesis @ ETH Zurich 13

1) Complex evolving fault geometries and earthquake ruptures on propagating faults

- Fault growth predominantly aseismically
- Seismic contribution to localize and steepen the fault angle + causing off-fault deformation
- Plastic off-fault dissipation strongly dependent on initial fault orientation

2) Complex earthquake rupturing in the Ridgecrest faulting case Orthogonal faulting but not yet orthogonal rupturing

- Ongoing research

The majority of this work in under review at EGU's Solid Earth: 2020.

Preuss, S., Ampuero, J. P., Gerya, T., and van Dinther, Y.: Characteristics of earthquake ruptures and dynamic off-fault deformation on propagating faults, Solid Earth Discuss., https://doi.org/10.5194/se-2020-16, in review,

