

Correlation of core and downhole seismic velocities in high-pressure metamorphic rocks: A case study for the COSC-1 borehole, Sweden

F. Kästner^{1,2}, S. Pierdominici¹, J. Elger², A. Zappone³, J. Kück¹, C. Berndt², A. Schleicher¹

¹ Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences ² GEOMAR Helmholtz Centre for Ocean Research Kiel ³ Department of Earth Science, ETH Zurich

EGU General Assembly | 4. - 8. May 2020

Solid Earth, 11, 607–626, 2020 https://doi.org/10.5194/se-11-607-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Correlation of core and downhole seismic velocities in high-pressure metamorphic rocks: a case study for the COSC-1 borehole, Sweden

Felix Kästner^{1,2}, Simona Pierdominici¹, Judith Elger², Alba Zappone³, Jochem Kück¹, and Christian Berndt²

¹Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
²GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
³Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland

Correspondence: Felix Kästner (felix.kaestner@gfz-potsdam.de)

Received: 18 October 2019 – Discussion started: 5 November 2019 Revised: 3 March 2020 – Accepted: 11 March 2020 – Published: 23 April 2020 The here presented work is mainly based on our just recently published paper in *Solid Earth* (Copernicus Publications).

Open access via: https://doi.org/10.5194/se-11-607-2020

This research has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project no. 339380967 (SPP-1006).

Project outline: Core-Log-Seismic Integration in a hard rock environments using the ICDP drilling project COSC-1, Sweden

DFG-funded research project (2017-20)

Prof. Dr. Christian Berndt (GEOMAR) Dr. Simona Pierdominici (GFZ)

1-year post-doc (Judith Elger)
3-year PhD (Felix Kästner)

Kästner et al. (2020)

HELMHO

3

Study area and motivation

- (b) Bedrock map with location of the COSC-1 borehole (colors modified; SGU Map Service) [3]
- (c) Seismic cross section indicated in (b) showing a highly reflective part of the COSC seismic profile [4,5]

GFZ Helmholtz Centre

[1] Gee et al. (2010)
[2] Lorenz et al. (2015a)
[3] Strömberg et al. (1994)

[4] Hedin et al. (2012) [5] Juhlin et al. (2016)

HELMHOLTZ

Core-log analyses of seismic properties at COSC-1 borehole, Sweden

Why seismic properties?

 ✓ Seismic velocities (v_P) continuously available throughout COSC-1 data sets

✓ Controlling parameter in reflection seismic

Determine and characterize seismic properties at core scale

Relate to "in situ" velocities using pressurized core samples

Compare with downhole sonic and borehole seismic (VSP*) velocities

Background: COSC drilling project Scientific objectives [1,2]

icdp

SSC

Background: COSC-1 drill core

Core recovery ~100%

Lithology [1] from on-site core description mainly composed of:

- Para/Orthogneiss
- Mica schists
- Amphibolite / Am-rich rocks
- Different structure/texture
- Metamorphic overprint
- Mylonitic deformation

Kästner et al. (2020)

HELMHOLTZ

7

Multi-Sensor Core Log P-wave velocities

Logging of the acoustic velocities using:

- Piston transducers + acoustic roller contact setup (250 kHz)
- Real-time QC and automatic P-wave firstarrival picking based on first zero-crossing and threshold detection
- Wetting of the core for proper coupling
- Calibration using POM round cores

GFZ Core logged at BGR Core Repository Berlin-Spandau (Germany) using a GEOTEK MSCL-S.

Results: Seismic velocities at core scale

Core-Log Vp comparison shows:

- ➢ High core Vp variability
- Low visual correlation
- Core Vp considerably lower than downhole sonic and VSP (on avg.)
- Certain intervals (e.g., 400-800 m, >2350 m) show good agreement

MSCL core log

Downhole sonic [1]

Vertical seismic profile [2]

[1] Lorenz et al. (2015b) [2] Krauß et al. (2015)

Seismic properties at core scale and under in situ conditions

Laboratory measurements:

- → Ultrasonic Vp and Vs at pressure up to 250 MPa (at room temp.)
- → 3 mutually perpendicular plugs drilled along major structural axes (foliation and lineation)*
- \rightarrow In total 16 samples measured
 - 10 samples: Kästner et al. (2020)
 - 6 samples: Wenning et al. (2016)

Measured at the Rock Physics and Mechanics Laboratory, ETH Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

High-quality P-wave (and S-wave) laboratory seismic data

P waves

S waves

CC

12

Kästner et al. (2020)

In this study we only considered P-wave data.

x - P- and S-wave first arrivals

HELMHO

Background: Velocity-pressure relation

GFZ See, e.g., Birch (1960); Wepfer & Christensen (1991); Ji et al. (2007)

Helmholtz Centre

POTSDAM

Kästner et al. (2020) 13

Laboratory seismic properties: data example*

* Mica schist, 1744 m

Helmholtz Centre

POTSDAM

Kästner et al. (2020)

HELMHO

14

Results: Mean intrinsic P-wave <u>velocity</u> and <u>anisotropy</u>

Mean intrinsic P-wave velocity and anisotropy show characteristic behavior at depth and can be related to different lithologies.

"Simulation" of seismic velocities at different ambient pressure conditions

Correlation of core and downhole logs using sample velocities

Velocities measured under different environmental conditions show

good correlation with laboratory measurements on core plugs

- Low MSCL core velocities most likely caused by microcracks due to depressurization of the cores
- $\hfill\square$ Downhole velocities not significantly affected by microcracks

Good correlation of core and downhole velocities for mafic units

Smoothed core and log seismic properties along the COSC-1 borehole

- Core, downhole sonic (Log), and borehole seismic (VSP) velocities show strong variations among each data set and at depths.
- Good correlation was found for mafic (amphibolite/metagabbro) units throughout all data sets.
- An increase in seismic anisotropy (up to 26 %) can be attributed to mica schists dominated below about 1.6 km.
- Characteristic seismic zones are indicated by the shaded areas.

* The plotted velocity data were smoothed with a 30 m depth average.

Kästner et al. (2020)

18

Challenges

Outlook

Ongoing and future investigations:

- Effects of composition and structure on the measured seismic anisotropy with focus on sample mineralogy and petrography and use of complementary structural analysis using EBSD (Kästner et al., in preparation)
- Core-log-seismic integration in metamorphic rocks and its implications for the regional geology (Elger et al., in preparation)
- Seismic stratigraphy and re-interpretation (+sensitivity analysis) of the highly reflective Lower Seve Nappe based on core, log, and laboratory investigations and limited 3D seismic data

References

- Birch, F.: The velocity of compressional waves in rocks to 10 kilobars: 1., J. Geophys. Res., 65(4), 1083–1102, 1960.
- Gee, D. G., Juhlin, C., Pascal, C. and Robinson, P.: Collisional Orogeny in the Scandinavian Caledonides (COSC), Gff, 132(1), 29–44, 2010.
- Hedin, P., Juhlin, C. and Gee, D. G.: Seismic imaging of the Scandinavian Caledonides to define ICDP drilling sites, Tectonophysics, 554–557, 30–41, 2012.
- Juhlin, C., Hedin, P., Gee, D. G., Lorenz, H., Kalscheuer, T. and Yan, P.: Seismic imaging in the eastern Scandinavian Caledonides: Siting the 2.5km deep COSC-2 borehole, central Sweden, Solid Earth, 7(3), 769–787, 2016.
- Ji, S., Wang, Q., Marcotte, D., Salisbury, M. H. and Xu, Z.: P wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure, J. Geophys. Res. Solid Earth, 112(9), B09204, 2007.
- Kästner, F., Pierdominici, S., Elger, J., Zappone, A., Kück, J. and Berndt, C.: Correlation of core and downhole seismic velocities in high-pressure metamorphic rocks: A case study for the COSC-1 borehole, Sweden, Solid Earth, 11, 607–626, 2020.
- Krauß, F., Simon, H., Giese, R., Buske, S., Hedin, P. and Juhlin, C.: Zero-Offset VSP in the COSC-1 borehole, Geophys. Res. Abstr., 17(EGU2015-3255), 2015.

- Lorenz, H., Rosberg, J.-E., Juhlin, C., Bjelm, L., Almqvist, B., Berthet, T., Conze, R., Gee, D. G., Klonowska, I., Pascal, C., Pedersen, K., Roberts, N. M. W. and Tsang, C.-F.: COSC-1 – drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia, Sci. Drill., 19, 1–11, 2015a.
- Lorenz, H., Rosberg, J.-E., Juhlin, C., Bjelm, L., Almqvist, B., Berthet, T., Conze, R., Gee, D. G., Klonowska, I., Pascal, C., Pedersen, K., Roberts, N. and Tsang, C.: COSC-1 operational report - Operational data sets., 2015b.
- Strömberg, A., Karis, L., Zachrisson, E., Sjöstrand, T. and Skogland, R.: Bedrock Geological Map of Jämtland County (Caledonides), scale 1:200 000, Sveriges Geol. Undersökning, Ca 53, 1994.
- Wepfer, W. W. and Christensen, N. I.: A seismic velocity-confining pressure relation, with applications, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 28(5), 451–456, 1991.
- Wenning, Q. C., Almqvist, B., Hedin, P. and Zappone, A.: Seismic anisotropy in mid to lower orogenic crust: Insights from laboratory measurements of Vp and Vs in drill core from central Scandinavian Caledonides, Tectonophysics, 692(A), 14–28, 2016.

