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In-situ	campaigns	have	revealed	that	Ice	Crystal	Number	Concentra.ons	(ICNCs)	in	
Antarc.c	clouds	are	much	higher	than	the	available	INPs	

Lachlan-Cope	&	
Listowski	2016	

Grosvenor	et	
al.	2012	

O’Shea	et	al.	
2017	

Young	et	al.	
2019	

How	do	these	numerous	ice	crystals	arise	at		
temperatures	<-38oC?	

Antarc.ca	is	a	remote	and	very	clean	
environment,	where	INPs	(	aerosols	that	can	act		

as	Ice	Nuclea@ng	Par@cles)	are	sparse	



(Hallet-Mossop)	

Could	Secondary	Ice	Produc.on	(SIP*)	explain	the		
enhanced	ice	crystal	concentra.ons	in	Antarc.ca	?	

SIP*	=	mul@plica@on	of	the	few	primary	ice	crystals	in	the	absence	of	addi@onal	INPs	

Not	efficient	in	the	
Arc-c	(Fu	et	al	
2019;	So-ropoulou	
et	al.	2019)	

The	only	SIP	
mechanism	
extensively	

implemented	in	
models		



Modeling	Secondary	Ice	Produc.on	in	Antarc.c	
Stratocumulus	with	WRF:	

	Young	et	al.	2019	

MAC	campaign:	
“Microphysics	of	
Antarc.c	clouds”	

Flight	M218	
	
Flight	M219	

27	November	2015:	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

WRF	cannot	reproduce	the	
observed	ice	crystal	
concentra.ons!!!	

	
NOTE:	WRF	includes	only	the	

Hallet-Mossop	process	
Young	et	al.	2019	

Modeling	Secondary	Ice	Produc.on	in	Antarc.c	
Stratocumulus	with	WRF:	



			Implementa.on	of	Collisional	Break-up	in	Morrison		
microphysics	scheme	(WRF	V4.1)	

	
Morrison:	2-moment	bulk	microphysics	scheme	with	5	hydrometeor	

species	(cloud	drops,	rain	drops,	cloud	ice,	graupel,	snow)	
	
FragmentaTon	is	assumed	to	occur	acer:	
	
1)	cloud	ice	–	graupel	collisions																																
	
2)	cloud	ice	–	snow	collisions																																					
	
3)	snow	–	graupel	collisions	
	
	
4)	graupel	–	graupel	collisions																																					
	
5)	snow	–	snow	collisions	
	

fragmenta-on	of	ice	

fragmenta-on	of	ice	

fragmenta-on	of	snow	

Fragments	
added	to	
cloud	ice	
category	



Modeling	MAC	cases	(Young	et	al.	2019)	with		
		the	updated	WRF	model	

	
	Sensi.vity	Simula.ons:	

•  PHIL0.2:	Phillips	parameterizaTon	(2017)	with	an	assumed	rimed	fracTon	~0.2	
for	the	collided	parTcle			(lightly	rimed)	

•  PHIL0.3:	rimed	fracTon		~	0.3				(moderately	rimed)	
•  PHIL0.4:	rimed	fracTon		~	0.4				(heavily	rimed)	
	
•  FRAG1:	constant	fragmentaTon	number	~	1	frag	ejected	per	every	collision	
•  FRAGsiz:	constant	fragmentaTon	number	with	size	restricTons	~	1	frag	ejected	

acer	break-up	of	parTcles	>	300μm	(Schwarzenboeck	et	al.,	2009)		

•  TAKAH:	fragmentaTon	number	esTmated	using	the	temperature	dependent	
Takahashi	formula	(Takahashi	et	al.	1995;	Sullivan	et	al.	2018)								

•  TAKAHsiz:			Takahashi	formula	scaled	with	size		
	
	



Black	line	:	default	Morrison	scheme	(only	Hallet-Mossop)	
Grey	line:	mean	observaTons	for	the	case	study	
Pink	line:	mean	observaTons	for	the	whole	MAC	campaign	
Other	colors:	different	parameterizaTons	for	collisional	break	–up		
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WRF	simula.ons	of	MAC	case	study		

	So-ropoulou	et	al.,	submiKed	to	ACP	

Mean	total	ice	crystal	number	concentra-ons	:	Nisg	



Surface	Cloud	RadiaTve	Forcing	(CRF)	Biases	:	CNTRL-	SensiTvity	test	

Significant	changes	in	surface	cloud	radiaTve	forcing	when	a	
parameterizaTon	for	collisional	break-up	is	included	in	WRF!		

	So-ropoulou	et	al.,		
submiKed	to	ACP	

WRF	simula.ons	of	MAC	case	study		



WRF	simula.ons	of	MAC	case	study		
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•  INP	x	0.1:	PHIL0.3_INP0.1	and	PHIL0.4_INP0.1	do	not	produce	secondary	 ice	due	to	
lack	of	enough	primary	ice	crystals	to	iniTate	collisional	break-up	

•  INP	x	10:	Small	differences	between	PHIL0.3	–	PHIL0.3_INP10	and	PHIL0.4	–PHIL0.4_INP10	

Sensi.vity	of	collisional	break-up	to	uncertain.es	in		
primary	ice	produc.on	



Conclusions:	

Ø  Break-up	from	ice–ice	collisions	can	explain	the	enhanced	ice	crystal	number	
concentraTons	observed	in	AntarcTc	clouds	

Ø  Phillips	 parameterizaTon	 for	 break-up	 (Phillips	 et	 al.	 2017)	 performs	 well	
only	 if	 a	 high	 rimed	 fracTon	 is	 assumed	 for	 the	 parTcles	 that	 undergo	
fragmentaTon	

Ø  Improved	performance	by	parameterizaTons	that	account	for	the	influence	
of	the	collided	parTcle’s	size	(e.g.	PHIL0.4,	FRAG1siz,	TAKAHsiz)	

Ø  ImplemenTng	 collisional	 break-up	 in	 atmospheric	models	 can	 substanTally	
impact	the	representaTon	of	the	surface	radiaTon	budget	

Ø  Liple	 sensiTvity	 of	 collisional	 break-up	 to	 uncertainTes	 in	 primary	 ice	
producTon,	as	 long	as	 there	are	enough	primary	 ice	crystals	 to	 iniTate	 the	
process	

contact:	georgia.so-ropoulou@epfl.ch	


