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Predicting long-term response to a change in emissions
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We’re interested in the long-term climate response patterns

(80+ years) to a range of pollutants

• Long-lived (e.g. CO2) and Short-lived (e.g. SO4)

• Global and Regional perturbations

Typically we run a perturbed General Circulation Model (GCM).

These are expensive. Can we build a machine learning emulator to make

fast predictions?
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Predicting long-term response to a change in short-term response
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We re-use a unique dataset from previous studies, all run in HadGEM3

[Kasoar et al., 2018, Baker et al., 2015, Myhre et al., 2017]

Only N = 21 samples!

Some pollutants only have 1 or 2 samples, so we cannot use emissions as

inputs to this emulator.

We choose the inputs to be short-term response map to remove

dependence on emission type.

Focus on surface temperature responses
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Predicting long-term response to a change in short-term response
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Supervised Learning

A supervised learning problem with

• Small N: Only N = 21 training simulations to learn from

• Big p: Take entire response maps (both inputs and outputs) with

145 latitudes, 192 longitudes p = 145 × 192 = 27840

Learn mapping from inputs x (N × p) to outputs y (N × p)

Inputs x (N × p)

Emulator

f (x)

Outputs y (N × p)

We compare Ridge regression and Gaussian process regression

against a standard approach, Pattern Scaling

We train the regression models on all-but-one simulation and predict on

the remaining.

[Hoerl and Kennard, 1970, Rasmussen, 2004, Mitchell, 2003]
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Performance: Prediction Errors

Errors averaged over broad regions are shown here for Ridge (R),

Gaussian process (G) and Pattern Scaling (P). We mostly see lower

errors for Gaussian process predictions.
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Summary

• We have explored the use of machine learning emulators to quickly

predict long-term surface temperature response to long- and

short-lived pollutants.

• Even with limited data, we find machine learning methods (Ridge,

Gaussian Process) predict response more accurately than the

standard approach, Pattern Scaling. Global and regional variability

is also captured better.

• We also explored a variety of methods (e.g. elastic net, random

forest), different input variables (e.g. temperature, geopotential

height) and dimension reduction (e.g. physical regions, PCA).

• Could the predictions be improved with additional data? Data

sharing and collaborations could help us test this.

• Next, we consider emulation of the short-term response given the

emissions perturbation.

5



Thank you for reading. Happy to take

questions, feedback, comments in the chat or

via email at laura.mansfield@pgr.reading.ac.uk
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