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We're interested in the long-term climate response patterns
(80+ years) to a range of pollutants

e Long-lived (e.g. CO2) and Short-lived (e.g. SO4)

e Global and Regional perturbations

Typically we run a perturbed General Circulation Model (GCM).
These are expensive. Can we build a machine learning emulator to make

fast predictions?



Predicting long-term response to a change in short-term response
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We re-use a unique dataset from previous studies, all run in HadGEM3
[Kasoar et al., 2018, Baker et al., 2015, Myhre et al., 2017]
Only N = 21 samples!

Some pollutants only have 1 or 2 samples, so we cannot use emissions as
inputs to this emulator.

We choose the inputs to be short-term response map to remove
dependence on emission type.

Focus on surface temperature responses



Predicting long-term response to a change in short-term response
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We re-use a unique dataset from previous studies, all run in HadGEM3
[Kasoar et al., 2018, Baker et al., 2015, Myhre et al., 2017]
Only N = 21 samples!

Some pollutants only have 1 or 2 samples, so we cannot use emissions as
inputs to this emulator.

We choose the inputs to be short-term response map to remove
dependence on emission type.

Focus on surface temperature responses



Supervised Learning

A supervised learning problem with
e Small N: Only N = 21 training simulations to learn from

e Big p: Take entire response maps (both inputs and outputs) with
145 latitudes, 192 longitudes p = 145 x 192 = 27840

Learn mapping from inputs x (N x p) to outputs y (N x p)
Inputs x (N x p) Outputs y (N x p)
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Emulator
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We compare Ridge regression and Gaussian process regression
against a standard approach, Pattern Scaling

We train the regression models on all-but-one simulation and predict on
the remaining.

[Hoerl and Kennard, 1970, Rasmussen, 2004, Mitchell, 2003]



Performance: Prediction Errors

Errors averaged over broad regions are shown here for Ridge (R),
and Pattern Scaling (P). We mostly see lower

errors for predictions.
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e We have explored the use of machine learning emulators to quickly
predict long-term surface temperature response to long- and
short-lived pollutants.

e Even with limited data, we find machine learning methods (Ridge,
Gaussian Process) predict response more accurately than the
standard approach, Pattern Scaling. Global and regional variability
is also captured better.

e We also explored a variety of methods (e.g. elastic net, random
forest), different input variables (e.g. temperature, geopotential
height) and dimension reduction (e.g. physical regions, PCA).

e Could the predictions be improved with additional data? Data
sharing and collaborations could help us test this.

e Next, we consider emulation of the short-term response given the
emissions perturbation.



Thank you for reading. Happy to take
questions, feedback, comments in the chat or
via email at laura.mansfield@pgr.reading.ac.uk
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