

AUTONOME PROVINZ BOZEN - SÜDTIROL

PROVINZIA AUTONOMA DE BULSAN - SÜDTIROL

CYCLAMEN

Cycling of carbon and water in mountain ecosystems under changing climate and land use A progress report

Florian Kitz¹, Paulina Bartkowiak^{2,3}, Mariapina Castelli², Hetal Dabhi⁴, Claudia Notarnicola², Mathias Rotach⁴, Thorsten Simon^{4,5}, Erich Tasser⁶, Simon Tscholl⁶, Georg Wohlfahrt¹

¹Department of Ecology, University of Innsbruck, Innsbruck, Austria
²Institute for Earth Observation, Eurac Research, Bolzano/Bozen, Italy
³Department of Chemical, Geological and Environmental Sciences, University of Milano Bicocca, Milano, Italy
⁴Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
⁵Institute of Statistics, University of Innsbruck, Innsbruck, Austria
⁶Institut für Alpine Umwelt, Eurac Research, Bolzano/Bozen, Italy

Main objectives

- Collect available flux data for ecosystems typical for the Alps
- Explore available remote sensing data and techniques for producing high quality evapotranspiration (ET) maps over vegetated areas in the complex structure of the Alpine region
- Improve Two Source Energy Balance (TSEB) models by combining them with enhanced satellite-derived products to obtain ET information at higher spatio-temporal resolution
- Calibrate and validate a simple biosphere model (SiB4) on the collected flux data
- Calculate future weather scenarios using a Weather Generator (WG)
- Simulate future land-use scenarios for alpine regions
- Combine the obtained knowledge to explore future climate scenarios for the Alps

Regional land-use scenarios

PROVINZIA AUTONOMA DE BULSAN - SÜDTIROL

Supported by the Autonomous Province of Bolzano-South Tyrol Department of Education Promotion, University and Research (L.G. 14)

Land-use scenarios: methodical background

Analysis steps applied in this study to assess past and future LULC changes due different socio-economic scenarios.

© Schirpke, Tscholl & Tasser, Journal of Environmental Management (under review)

5

Land-use scenarios: methodical background

Scenarios based on 1) local workshops (Bayfield et al., 2008; Kohler et al., 2017), 2) literature evaluation (Houet et al., 2017; Malek and Boerboom, 2015; Strasser et al., 2019; Vannier et al., 2019, 2016), and 3) new social trends (FAO et al., 2019; Maggio et al., 2015)

Scenarios:

- 1. 'Business as usual' (BAU)
- 2. 'Liberalisation'
- 3. 'Rewilding'
- 4. 'Food sovereignty'

Land-use scenarios: results Current land use

'Business as usual' (BAU): Continuation of the land use dynamics of the past 50 years

'Liberalisation': Economic development driven by private investment leading to an increasing intensification of agriculturally favourable areas, abandonment of unfavourable areas

'Food sovereignty': Current trend of increasing food sovereignty and security lead to a decrease of the proportion of grassland used for milk and meat production and permanent cultures, but a

increase of arable land

© Schirpke, Tscholl & Tasser, Journal of Environmental Management (under review)

'Rewilding': Characterized by a rapid decline in direct areabased payments (only environmental are paid out) leading to a drastic decline of economic activities in mountainregions and a concentration inthe favoured areas of the main valleys

Land-use scenarios: results Distribution of areas (% of total area)

Remote sensing

Methods

- Two Source Energy Balance (TSEB) modelling exploits timedifferential land surface temperature (LST) from remote sensing imagery and limited number of meteorological data [Castelli et al., 2018]. Thanks to the thermal data fusion scheme of the model, it is possible to retrieve ET at finer spatial resolution in heterogenous areas [Kustas et al., 2011].
- In mountainous regions characterized by complex topography and land-cover heterogeneity, the performance of TSEB is limited by common overcast, large pixel size and low temporal resolution of satellite data. In *CYCLAMEN* project we overcome this limitations by applying gap-filling and downscaling to produce 250-m daily LST maps. Firstly, we disaggregate 1-km MODIS LST by applying DEM and NDVI as predictors with Random Forest (RF) algorithm (Fig. 1). Next, missing pixels are recovered by investigating relationships between LST and meteorological data under clear- and cloudy-sky conditions.

Fig.1. Scheme of the RF downscaling approach [Bartkowiak et al., 2019]

Results

To assess Random Forest performance, the downscaled maps were validated against time-coincident Landsat LST images acquired in different seasons, i.e. spring, summer and autumn (Fig. 2). Additionally, the reference data were compared with the original MODIS LST images (Fig. 3).

■ Landsat LST vs. original MODIS LST ■ Landsat LST vs. sharpened MODIS LST

Fig. 2. Root Mean Square Error (RMSE) between reference Landsat LST images and original and downscaled MODIS LST maps.

Ν

Fig. 3. Visual comparison between MODIS and Landsat LST: **A.** original MODIS LST (1000 m), **B.** downscaled MODIS LST (250 m), **C.** degraded Landsat reference image (250 m) on 25 May 2005 [Bartkowiak et al., 2019].

Weather Generator

Institut für Atmosphären- und Kryosphärenwissenschaften

Weather Generator for Atmospheric input Data

✓ Validate Weather Generator
 → mean conditions (not shown)

 \rightarrow 'extreme events' & multivariate extremes

- ➤ Climate data from 3 different horiz. scales → Europe / Austria / 'Ötztal' [valley in Austria]
- Example result
 - \rightarrow extremes 'astonishingly well' reproduced
 - \rightarrow results not dependent on climate zone
 - → multivariate extremes: reasonable reproduction
- ➤ Dabhi et al (2020)
 → full paper in review Meteorol Z

Climate Scenarios

- ➤ Use regional climate model scenario
 → EURO-CORDEX, different RCPs, different model combinations (realized: 1)
 - → use: change in statistical characteristics
 - (not: change in physical variables)
 - \rightarrow quantile delta mapping (QDM)
- > example result
 - \rightarrow 2 m Temp., Davos Switzerland
 - \rightarrow RCP8.5
- Iarge impact of QDM
 - \rightarrow corrects for bias
 - \rightarrow also distribution
- realistic input for vegetation model

Data collection, biosphere model calibration and validation

Methods

- Meteorological tower data was used as input for a simple biosphere model (SiB4)
- Remote sensing data (MERRA-2, NASA) was used for the spin-up of SiB4 simulations
- The results were compared to eddy covariance (EC) measurements at the respective sites

© Katherine Haynes, Ian Baker, Scott Dennin

Model performance - grassland

Site Name: Monte Bondone FLUXNET-ID: IT-Mbo Country: Italy Latitude: 46.01472222 N Longitude: 11.04583333 E Biome: Grassland Elevation (msl): 1189 Year: 2010, 2011, 2012 Variable: NEE

Outlook

- Calibration and validation of the SiB4 model for forest ecosystems
- Generating future weather for all EC sites using the Weather Generator
- Using the Weather Generator output and land use scenarios as input for biosphere modelling
- Due to common cloud contamination effect over the Alps, meteorological-based gap-filling to low resolution thermal remote sensing images will be additionally implemented
- Application of the enhanced remotely sensed datasets for TSEB models in order to compare them with SVAT simulations of ET [Wohlfahrt, 2004]

References

- Bartkowiak, P., Castelli, M., & Notarnicola, C. (2019). Downscaling Land Surface Temperature from MODIS Dataset with Random Forest Approach over Alpine Vegetated Areas. *Remote Sensing*, *11*(11), 1319.
- Castelli, M., Anderson, M. C., Yang, Y., Wohlfahrt, G., Bertoldi, G., Niedrist, G., Notarnicola, C. (2018). Two-source energy balance modeling of evapotranspiration in Alpine grasslands. *Remote Sensing of Environment*, 209, 327-342.
- Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., Gonzalez-Dugo, M. P., & Gao, F. (2011). Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. *Hydrology and Earth System Sciences*, 15(1), 223.
- Wohlfahrt, G., 2004. Modelling Fluxes and Concentrations of CO2, H2O and Sensible Heat Within and Above a Mountain Meadow Canopy: A Comparison of Three Lagrangian Models and Three Parameterisation Options for the Lagrangian Time Scale. *Boundary Layer Meteorol.*, 113(1): 43-80.