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Why drainage fraction?
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Diffuse nitrogen pollution is a major cause of degraded 
water quality in rivers and groundwater across Europe [1].
In artificially drained agricultural catchments, nitrate 
leaching from the root zone is either transmitted directly 
to streams by tile drains or transported to the 
groundwater system.

Thus, the partitioning of the water flux to drains, the 
drainage fraction [0,1] (Fig. 1), can be used as an indicator 
of surface-water/groundwater vulnerability to nitrogen 
application. 

A decision support tool for fast predictions and mapping 
of drainage fraction could potentially support decision 
making on spatially differentiated regulation of nitrate 
emissions.

Drainage fraction can be estimated using a hydrological 
model, however…

Drainage fraction = A/(A+B)

Figure 1. Partitioning of the flux of infiltrating water (red arrows) to the 
saturated zone below a field, between drains (A) and groundwater (B).     

A: Drains to streams,
No/little reduction

B: Groundwater, 
high reduction
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Problem 2: Predicting beyond training data with metamodels  
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In areas beyond the training data, e.g. in different spatial regions/catchments 
that might be biased compared to the training data, the model has no 
information about the uncertainty of the predictions. 

Thus, estimating the metamodel transferability to new (data) regions, and 
mapping the area to which the metamodel can be reliably applied, is highly 
relevant. 

Problem 1: Hydrological models for decision-making
- Running models for predictions is computationally very time-consuming
- Models are not always available at the site of interest or in the required 

resolution. 
Solution → Developing a drainage fraction metamodel for faster predictions 
and predictions beyond model domain. 

A metamodel is a 
computationally efficient 
surrogate for a more 
detailed numerical model [2]
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These two problems are the motivation of the study. 



Methodology
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1) Develop metamodel for drainage fraction 
prediction in the Storaa catchment (Fig. 2) and 
analyse transferability by within-catchment 
spatial cross-validation (Fig. 3).

2) Rank predictor variables by the variable 
importance scores of the trained models. 

3) Compute distance measures in the predictor 
space between train and test data as a proxy 
for metamodel transferability. 

4) Develop Transferability Index and map area to 
which the metamodel can be reliably applied. 
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Figure 2 (top right): a) Location of the Storaa catchment in Denmark, b) 
the Storaa catchment, topography and streams. 

Figure 3 (bottom right): Five spatial subsets (sub1-5) of the Storaa 
catchment, each representing 20% of the data for spatial cross-
validation. 



Metamodel setup
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- Random Forest algorithm applied on a dataset with random 
selection of 20% hold-out for validation (80-20 data set).

- 18 mappable predictor variables (Fig. 4).
- Target variable: drainage fraction estimates from a fully coupled 

surface water–groundwater Mike-SHE model for the Storaa 
catchment in 100m resolution (98,946 datapoints) (Fig. 5). 
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Figure 4. Examples of predictor variables: topography [m], mean 
precipitation fall [mm/day], hydrologic position and soil class.

Figure 5. Drainage fraction [0,1] target variable 
derived from Mike-SHE. 
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Metamodel results
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The metamodel is able to explain 78% of 
the variability of the drainage fraction in 
the 20% hold-out dataset (Fig. 6). 

The most important predictor variable 
groups (Fig. 7) are:
1) topography
2) precipitation
3) soil texture

This finding corresponds with our physical 
understanding of the drainage system. 

Figure 6. Density plot of Mike-SHE drainage fraction 
plotted against predicted metamodel (ML) drainage 
fraction for the randomly sampled test dataset. Dotted 
line is 1:1.

Figure 7. Grouped predictor 
variables ranked by importance 
(decrease in R2 after permutation). 



5-fold spatial cross-validation 
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In addition to the random selection of the 80-20 
dataset, the Random Forest algorithm was trained 
and tested on five spatially defined 80-20 datasets, 
where the 20% hold-out is a spatial subset of the 
catchment (Fig. 8). 
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Figure 9. Model performance (R2) for the spatial subsets and 
randomly sampled dataset, for the training data (blue), out-of-bag 
(OOB) estimate (orange) and the 20% hold-out data.

Figure 8. Spatial subsets (sub1-5) used for spatial cross-validation. 
Each subset (20% of the data) is used for testing the metamodel, 
trained on the remaning 80% of the data.

Model performance varies considerably between the 
spatial hold-outs and decreases significantly 
compared to the randomly sampled dataset (Fig. 9). 
The OOB R2 is only equal to the hold-out R2 for the 
random dataset. 



Distance metrics
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A set of histogram distance metrics (equations to the right [3]) are 
calculated for each predictor variable for each hold-out test set. 
The train-test histograms for the random train-test dataset are near-
identical whereas the spatial subsets vary in range and shape (Fig. 10). 
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Figure 10. Distance metrics and normalized histograms of each predictor variable for the 
six 80-20 datsets are calculated, here exemplified by the topography variable.



Metamodel transferability
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Preliminary results: 
The positive correlation between 
RMSE and distance metrics and the 
negative correlation between R2 and 
distance metrics (Fig. 11) indicates 
that distance metrics could be used 
as a first step towards a metamodel 
transferability index. 

Work in progress: 
1) Compute Transferability Index 
based on mean distance metrics 
weighted by predictor variable 
importance. 
2) Use Transferability Index to map 
area to which the metamodel can be 
reliably applied and locate areas 
where additional training data is 
required to increase it.

Figure 11. Top left: mean histogram intersection across predictor varibles for each train-test dataset. 
Bottom left: mean distance metrics across predictor variables for each train-test dataset. Normalized 
distance metrics plotted against RMSE (top right) and R2 (bottom right), 6 points of similar color 
represent the 6 train-test datasets. 
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Discussion and Conclusions
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Machine learning based metamodels have enjoyed increasing attention in the context 
of hydrology [4], due to their capacity of making fast predictions and their seemingly 
high performance. We found that:

• The Random Forest metamodel was capable of mapping drainage fraction with an 
R2 of 0.78 for a 80-20% randomly sampled train-test dataset. 

• Metamodel performance varied considerably between spatial subsets of the 
catchment and was significantly lower than the Random Rorest out-of-bag-
estimates and the metamodel performance based on random sampling. 

• Histogram distance metrics in the predictor space could be used to calculate a 
metamodel Transferability Index. 

• Improved understanding of the conditions for which metamodels provide reliable 
predictions, would enable decision-makers to evaluate whether the model used is 
fit for the predictive task at hand. 
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