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Introduction
Atmospheric modeling needs to include physical processes on each time and length scale. While a numerical model is able
to represent processes acting on time and length scales that are longer or larger than the chosen numerical discretization,
it nevertheless needs to include the effect of various non-resolved physical processes. A prominent example of such a
subgrid process are clouds, which are not resolved in most models and even dedicated cloud models cannot resolve the
microphysical processes of the cloud.
At the moment, no universal governing equation is available to describe the evolution of a cloud across all scales, thus
several mathematical formulations of the cloud processes exist in the literature. In particular, these formulations typically
contain uncertain parameters, which may be artificial parameters or physical parameters with limited observational evidence
of their value. Such parameters introduce uncertainty into the (cloud) parameterization and, consequently, into the whole
numerical model. We propose algorithmic differentiation (AD) as a way to identify parameters with largest sensitivities in
numerical models and illustrate the technique at the example of a cloud scheme.

What is Algorithmic Differentiation (AD)?

• A (subgrid) parameterization may be thought of as a function f , taking the resolved flow characteristics y together with
parameters η, and provides the feedback of the unresolved process z = f (y, η).

• The sensitivity of z to a parameter equals the derivative dz
dη = ∂f

∂η .

• AD allows to compute the derivative ∂f̂
∂η , where f̂ is the implemented version of f , alongside the usual execution of the

code.
• AD may be thought of as adding to each code statement an additional statement, evaluating the exact mathematical
derivative of the statement at hand. Consequently, the computed derivatives are exact up to machine accuracy.

• For codes written in C++, the tool CoDiPack (Sagebaum et al., 2019) allows the easy inclusion of AD into an existing code.

The Box-Model including the IFS one-moment bulk cloud scheme

• The one-moment warm cloud scheme from the IFS model (ECMWF, 2017) was implemented into a box-model framework
in C++, including explicit computation of depositional growth of cloud droplets (Rosemeier et al., 2018; Porz et al., 2018):
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where qc, qr, qv denote the mixing-ratios of cloud droplets, rain droplets, water vapor, and S represents the saturation ratio.
• All coefficients except for c and all exponents are considered as parameters.
• As an example, we consider the formation of a cloud with an updraft velocity w = 1 m s−1. Figure 1 documents the temporal
evolution of the cloud variables qc, qr and the saturatiom ratio S.
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Figure 1: Temporal evolution of the saturation ratio S and the cloud variables qc, qr.

Temporal Evolution of the Sensitivities computed using AD

• AD computes the sensitivities of all co-
efficients and all exponents within each
timestep.

• Figure 2 shows the sensitivities of the co-
efficients in the cloud model (1) for this
scenario with respect to cloud droplet
mass qc (left column) and rain droplet
mass qr (right column).

• As an example, the coefficient for auto-
conversion is most sensitive during cloud
formation, see the red curve in Figure 2.

• Although the sedimentation process only
affects qr according to the model equa-
tions (1), cloud droplet mass shows an
indirect sensitivity to this coefficient, see
the purple curve in 2, left column.

• Figure 3 shows the sensitivities of the ex-
ponents in the cloud model (1) for this
scenario with respect to cloud droplet
mass qc (left column) and rain droplet
mass qr (right column).

• In this case, the most sensitive exponents
for cloud droplet mass are the exponents
of the accretion process.

• These results elucidate the sensitivity of
the cloud variables to the parameter val-
ues in the model (1) with only a single
model run instead of using an ensemble
of runs, because AD computes the sensi-
tivity along the usual program execution.

• AD-computed sensitivities depend on the
timestep, but their ratio is independent of
the timestep.
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Figure 2: Derivatives with respect to the coefficients.

0 300 600 900 1200 1500 1800

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e 7

dqc/d
dqc/d c

dqc/d r

dqc/d 1

dqc/d 2

dqc/d

0 300 600 900 1200 1500 1800

Time (s)

3

2

1

0

1

2
1e 7

dqr/d
dqr/d c

dqr/d r

dqr/d 1

dqr/d 2

dqr/d

Figure 3: Derivatives with respect to the exponents.

Conclusion
• AD is well suited to compute the sensitivities of parameters within a model, i.e. it computes the sensitivity of the imple-
mented code to the parameter.

• AD computes the sensitivities up to machine accuracy and introduces only a constant overhead compared to the program
execution without AD. This may be much cheaper than conventional ensemble runs.

• This technique is not restricted to cloud schemes nor to C++, but may be applied to any (subgrid) parameterization
although Fortran codes usually need more code modifications to implement AD.
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