

Soil-atmosphere CO_2 and CH_4 fluxes in a nutrient-poor drained peatland forest in boreal Sweden

Järvi Järveoja (jarvi.jarveoja@slu.se), Matthias Peichl, Mats B. Nilsson Swedish University of Agricultural Sciences, Department of Forest Ecology & Management, Umeå, Sweden

Study background

- Between 1.5 and 2.0 million ha of natural peatlands in Sweden (and >15 million ha globally) have been drained for forestry purposes
- Concern over the potentially large greenhouse gas (GHG) emissions from these areas has raised interest in exploring alternative management strategies, e.g. rewetting

Main research questions

- What is the GHG sink-source strength of a nutrient-poor drained peatland forest in boreal Sweden?
- What is the contribution of the individual component fluxes?
- What is the GHG mitigation potential of peatland rewetting practices?

EGU2020-14053: BG3.21 Peatland management

© 2020 Authors. All rights reserved

Google

Methods and site description

Trollberget drained peatland forest Drained ~100 years ago, moderately sparse cover of Scots pine, soil C:N ~45, WTL ~-25cm

Paired experimental set-up Control: drained & treed Treatment: rewetted & trees cut (2020)

Plot-scale GHG fluxes: CO₂, CH₄ and N₂O Chamber measurements along transects (2018-...) & from the main ditch (2020)

Vegetation: Tree inventory (2018 & 2020), litterfall (2018-...), tree coring (2020), ground veg. inventory (2020), phenocam, NDVI

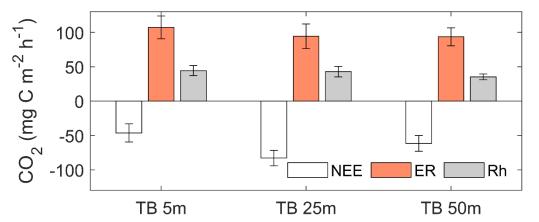
Supporting measurements Meteo & soil environment Soil properties: OM, BD, CN, δ^{13} C, δ^{15} N (2019)

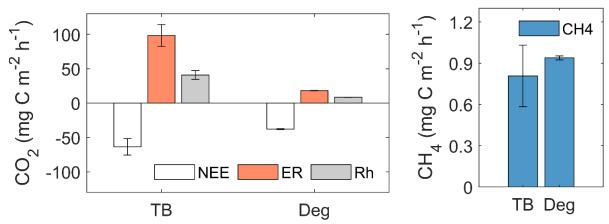
Ecosystem-scale CO₂, CH₄ and H₂O fluxes Eddy covariance tower (2020)

- Chamber plots
- EC/meteo tower

REWETTED

(2020)


Comparison data from the autochamber system at the nearby natural Degerö mire


CONTROI

EGU2020-14053: BG3.21 Peatland management

© 2020 Authors. All rights reserved

Fig 1. Daytime net CO₂ exchange (NEE), ecosystem and heterotrophic respiration (ER, Rh) at the drained Trollberget peatland forest (TB) for the 3 ditch distances

Fig 2. Comparison between the daytime fluxes of NEE, ER, Rh and methane (CH_4) at the drained Trollberget peatland forest (TB) and the natural Degerö mire (Deg)

Take home messages & Discussion points

- No clear ditch distance effect at the drained TB site but daytime net CO₂ uptake greatest at 25m distance additional site properties masking ditch distance effects?
- Daytime net CO₂ uptake and respiration fluxes greater at the drained TB site compared to the natural mire (Deg) – preliminary modeling analysis suggests a close-to-zero annual GHG balance at TB

FORMAS

• Drainage increases the component fluxes, i.e. enhances the rate of C cycling – how will rewetting affect the GHG dynamics and balances?

