

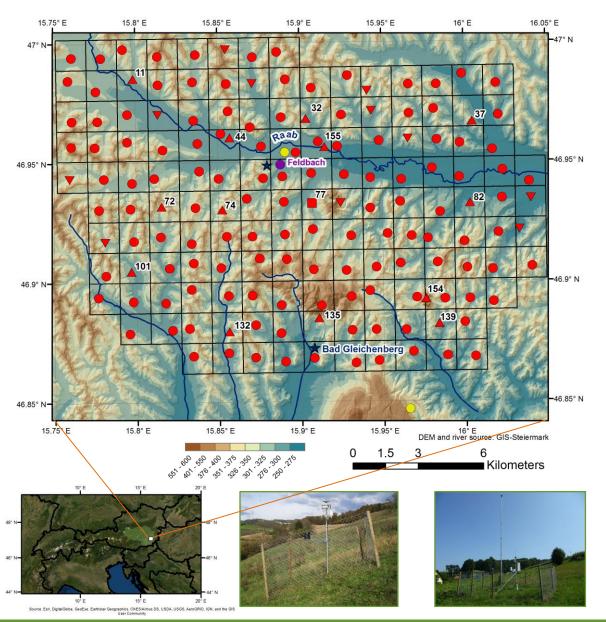
The WegenerNet 3D weather and climate research facility: A unique open-air laboratory for high-resolution precipitation studies

Jürgen Fuchsberger¹, Gottfried Kirchengast^{1,2}, Robert Galovic¹, and Christoph Bichler^{1,2}

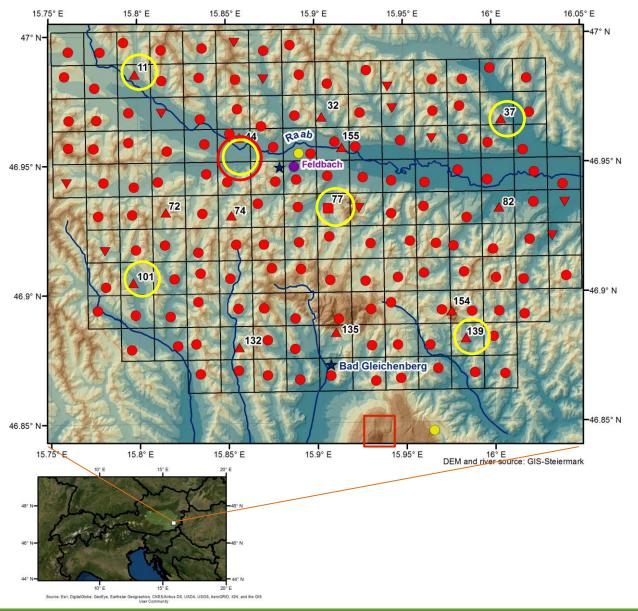
1) Wegener Center for Climate and Global Change (WEGC), University of Graz (Contact: juergen.fuchsberger@uni-graz.at; www.wegcenter.at)

2) Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics, University of Graz

Online display @ EGU 2020 Sharing Geoscience Online - Sess. AS1.36, Pres. D3197 - 7 May 2020



Introduction: The WegenerNet Feldbach Region


Key features of the WegenerNet:

- Pioneering high-resolution network for long-term monitoring of weather and climate
- 155 climate stations (red symbols in map) located in the southeastern Alpine foreland in Austria
- ~22 km x 16 km region
- Station grid with a station every about 2 km²
- Elevation range ~250 m to 600 m,
- Highest station elevation: 520 m
- More than 13 years of data (start: 1st January 2007)
- Main parameters: Temperature, rel. humidity, and precipitation, measured at all stations
- At 13 stations additional measurements of wind and solid precipitation (heated rain gauges)
- At 12 Stations soil moisture and soil temperature measurements
- Reference station additionally measures air pressure and net radiation balance
- Measurement sampling rate 1 min to 5 min
- Data available at www.wegenernet.org

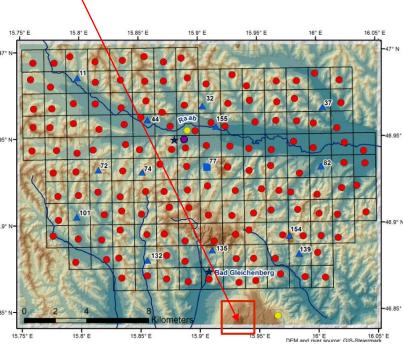
WegenerNet extension: 3D open-air laboratory

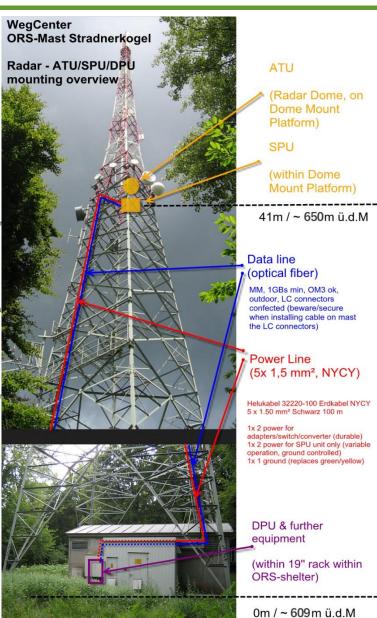
Currently, the WegenerNet is being converted into a 3D open-air laboratory for weather and climate research at very high resolution.

In this scope, three new types of observing components are added to the network:

- A polarimetric X-band Doppler precipitation radar
- An azimuth-steerable microwave/IR radiometer
- A water vapor mapping high-resolution Global Navigation Satellite System (GNSS) six-station network ("GNSS-StarNet")

The three components are marked by these symbols in the map:

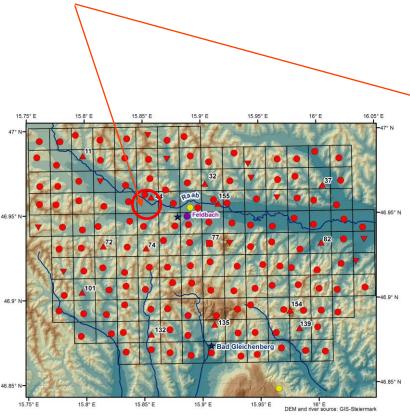

- X-Band Precipitation Radar
- GNSS-StarNet (6 GNSS sensors)
- Tropospheric Profiling Radiometer


Extension 1: Polarimetric X-Band precipitation radar Stradnerkogel

Location: Mount Stradnerkogel at 609 m above sea level.

Mounted on a 81 m tall radio mast, about half-level, at 41 m height.

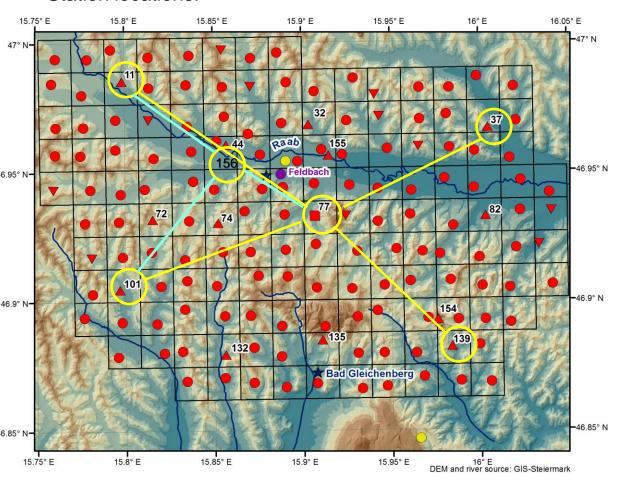
X-Band precipitation radar: Specifications and data products


- Type Furuno WR-2120
- Polarimetric X-band weather radar operating at ~9.4 GHz
- Native resolution: 2.7° angular, 300 m radial
- Resolution of processed 3D volume data: 1 km x 1 km horizontal, 500 m vertical
- Observation range: 35 km (up to 70 km for case studies)
- 5-min time sampling (full 3D volume; down to 30 s for case studies)
- Peak output power: 100 W
- Advanced pulse compression techniques
- Output products: Rainfall intensity R (mm/h), Reflectivity Zh and Zv (dBZ), Doppler velocity V (m/s), Doppler velocity width W (m/s), Cross polarization difference phase φdp (deg), Specific differential phase KDP (deg/km), Correlation coefficient between the two polarizations, Horizontal and Vertical Differential reflectivity ZDR (dB)
- Further derived products: Hydrometeor classification, drop size distribution
- Deployment on the radio mast and start of operations in May 2020

Extension 2: Tropospheric profiling microwave/IR radiometer

Location "Central Station Raabtal" (156): Rooftop (~27 m above ground) of office building in central valley of the region

Tropospheric profiling radiometer: Specifications and data products


- Type: RPG-HATPRO-G5
- Humidity and temperature profiling microwave/IR radiometer
- Multi-directional azimuth and elevation scanning
- 7 channels between 22.24 GHz and 31.40 GHz (focus humidity)
- 7 channels between 51.26 GHz and 58.00 GHz (focus temperature)
- IR radiometer at 9.6-11.5 µm band
- Vertical grid resolution of <= 60 m in boundary layer (at < 1.5 km altitude) and <= 300 m in free troposphere (1.5 km to 10 km)
- Observation range: 0 m to 10000 m
- 5-min time sampling (for full 3D scene for chosen ops mode)
- Capable of GNSS satellite tracking for GNSS-line-of-sight integrated water vapor (IWV) observations
- Output products: temperature, humidity, and liquid water profiles; IWV, liquid water path, cloud base height
- temperature profiling with an accuracy of ~0.5 K or better in boundary layer and ~1 K or better in free troposphere
- relative humidity profiling with an accuracy of ~5 % or better in the lower troposphere (< 5 km altitude);
- Installation in September/October 2020 timeframe

Extension 3: GNSS six-station network "GNSS-StarNet"

Station locations:

- 6 GNSS stations within WegenerNet region (at WegenerNet station no.s 11, 37, 77, 101, 139, 156), built and operated jointly with the GFZ Potsdam (J. Wickert and Team)
- Two star-shaped subnets:
 - "Main Star": 5-star with ~10 km interstation distances, consisting of stations 11, 37, 77, 101, 139
 - "Embedded Star": 4-star with ~5 km interstation distances, consisting of stations 11, 156, 77, 101
 - Station 156 (center of the Embedded Star) will be GRUAN¹ standard (Choke-ring antenna, collocated tropospheric profiling radiometer measurements, etc.)

GNSS-StarNet "Main Star"

— GNSS-StarNet "Embedded Star"

¹Global Climate Observing System Reference Upper-Air Network (www.gruan.org).

GNSS-StarNet: Specifications and data products

- Receiver type: Septentrio PolaRx5 FULL
- Antenna type at five standard stations: Septentrio PolaNt-x MF
- Antenna type at GRUAN station (at Central Station Raabtal, 156):
 Septentrio PolaNT Choke Ring B3/E6
- Mapping of water vapor columns
- 15-min time sampling (slant total delays 2.5 min)
- Main data products: Vertically Integrated Water Vapor [kg m²], Zenith
 Wet Delay [mm], Zenith Total Delay [mm], Slant Total Delay [mm]
- Installation in Summer 2020
- Operated in cooperation with GFZ Potsdam, providing station monitoring and processing towards the main data products

References and further Information

Kirchengast, G., T. Kabas, A. Leuprecht, C. Bichler, and H. Truhetz (2014):

WegenerNet: A pioneering high-resolution network for monitoring weather and climate. Bull. Amer. Meteor. Soc., 95, 227-242. https://doi.org/10.1175/BAMS-D-11-00161.1

Fuchsberger, J., G. Kirchengast, and T. Kabas (2018):

Release Notes for Version 7 of the WegenerNet Processing System (WPS Level-2 data v7). Wegener Center, University of Graz, Graz, Austria, WegenerNet Tech. Report No. 1/2018, Version 1.1.

https://wegenernet.org/downloads/Fuchsberger-etal 2018 WPSv7-release-notes.pdf

Data availability:

DOI:

Fuchsberger J., G. Kirchengast, C. Bichler, A. Leuprecht, and T. Kabas (2020):

WegenerNet climate station network Level 2 data version 7.1 (2007–2019).

University of Graz, Wegener Center for Climate and Global Change, Graz, Austria. https://doi.org/10.25364/WEGC/WPS7.1:2020.1

Data portal: www.wegenernet.org

Homepage: www.wegcenter.at/wegenernet

Provider information:

Weather radar: https://furuno-weather-radar.com

Radiometer: https://www.radiometer-physics.de

GNSS infrastructure: https://www.gfz-potsdam.de/en/section/space-geodetic-techniques/projects/gnss-infrastructure/