

Towards the first circumarctic N₂O budget – Extrapolating to the landscape scale

Lona van Delden¹, Maija Marushchak^{1,2}, Carolina Voigt³, Guido Grosse⁴, Alexey Faguet⁵, Nikolay Lashchinskiy^{5,6}, Johanna Kerttula¹, Christina Biasi¹

¹ Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland

² Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland

³ Department of Geography, University of Montréal, Montréal, Canada

⁴ Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany

⁵ Trofimuk Institute for Petroleum Geology and Geophysics, SB RAS, Russia

⁶ Central Siberian Botanical Garden SB RAS, Novosibirsk, Russia

EGU2020: Sharing Geoscience Online

Towards the first circumarctic N₂O budget

Significance of the Arctic

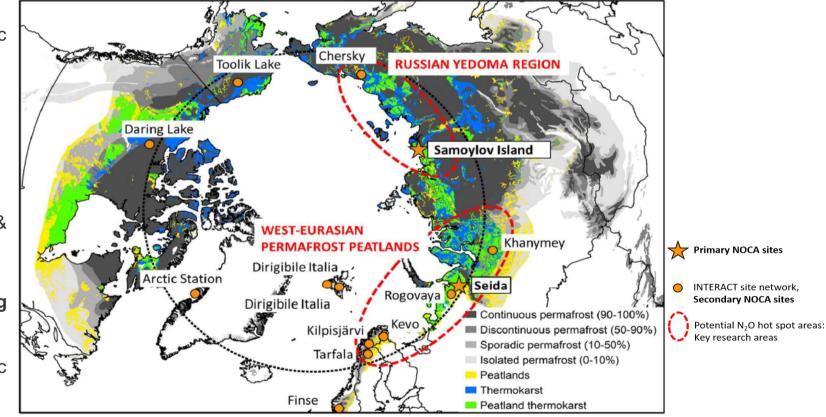
• Warming twice as fast as the rest of the globe (IPCC 2013)

Significance of permafrost

- Covers 23 million km² (Northern Hemisphere alone, Strauss et al. 2017)
- Large soil organic carbon (C) stock in the northern permafrost region of ~1500 Gt (Hugelius et al., 2014)
- Scarce data on circum-arctic nitrogen (N) stock

Significance of nitrous oxide (N₂O)

- ~300 times stronger greenhouse gas than carbon dioxide (CO₂) (IPCC 2013)
- Produced by microbial processes in the soil mostly associated with plant-available mineral N

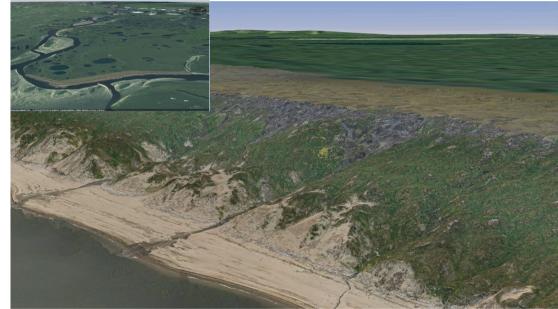

Towards the first circumarctic N₂O budget

Ongoing N₂O data acquisition from static chamber and soil gas measurements (plotscale data)

Data on **landcoverclasses** from the literature, INTERACT cooperation partners & NOCA expeditions

Bottom-up upscaling approach to landscape, regional and finally circumarctic scale




Modified from Voigt et al. (2017), PNAS.

Upscaling from plot to landscape scale

- Plot-scale measurements
- N₂O flux, soil, vegetation & micrometeorological data
- Upscaling
- Island cliff 3D model and vegetation maps based on unmanned aerial vehicle (UAV) imagery (landscape scale)
- Satellite imagery (regional, circumpolar)

3D model by Alexey Faguet, **Russian Academy of Sciences**

2019 Expedition to the Lena River Delta

- 2019 NOCA primary study site: Kurungnakh Island is located within the Lena River Delta in Eastern Siberia
- Yedoma deposits: Pleistocene icerich permafrost with ice-wedges covering > 1 million km² of the northern permafrost zone (Grosse et al., 2011)
- Thawed by fluvial thermo-erosion forming retrogressive thaw slumps
- ~130 Gt organic carbon in Yedoma (Strauss et al., 2017)

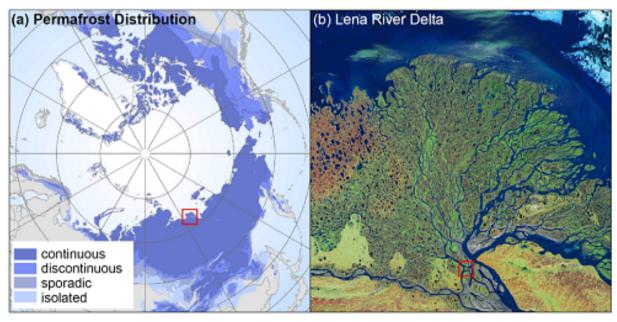


Figure by Boike et al. (2012):

(a) Circumpolar permafrost distribution (Brown et al., 1998) and the Lena River Delta.(b) Location of the Kurungnakh Island within the Lena River Delta, Eastern Siberia, Russia (NASA, 2000).

2019 Expedition to the Lena River Delta

20 sites (5 repl. each):

- Yedoma outcrop with 7 vegetation types
- 3 topographic transects (island plateau, long dried-out thermokarst lake basin, lake rim) with 3 sites each following a moisture gradient
- 3 sites within 'recently' dried-out thermokarst lake
- 1 exposed and freshly vegetated lake rim site with meltwater runoff

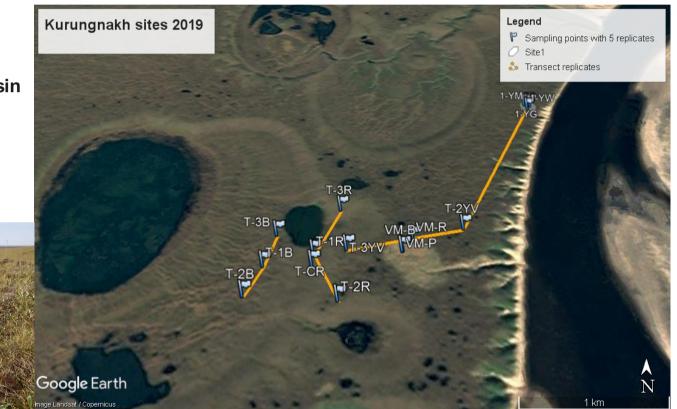
Lona van Delden et al.

UNIVERSITY OF

EASTERN FINLAND

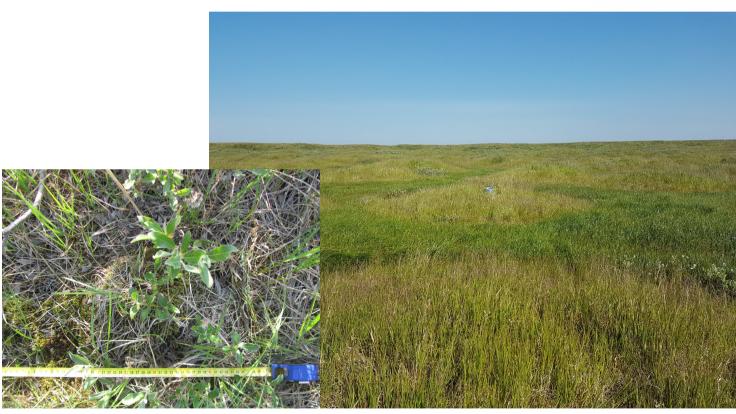
Yedoma outcrop (A) with 7 vegetation types

- Yedoma with Holocene vegetation cover (~30cm, moss dominated)
- Freshly thawed, wet and bare Yedoma
- Dry and bare Yedoma


- Yedoma with young mosses (D)
- Yedoma with young grasses (B)
- Yedoma with the yellow flowering Senecio palustris (C)
- Yedoma with grass and Senecio palustris

3 topographic transects

- Island **plateau** with Holocene cover and typical tundra vegetation
- Long dried-out thermokarst **lake basin** with polygon tundra
- Long dried-out thermokarst lake rim



'Recently' dried-out thermokarst lake

- Wet and partially waterlogged **basin** with deep green grass
- Small ice elevations (5-10m²) vegetated with grass
- **Rim** with soft slope, vegetated by moss, grass and small shrubs

Lona van Delden et al.

UNIVERSITY OF

EASTERN FINLAND

Exposed and freshly vegetated lake rim site

- Characterized by broken Holocene cover and melt water run off
- Thawed Yedoma mixed with sand and organic matter
- Young, tall and deep green grasses and small shrubs
- Partially water logged and/or bare soil towards the lower slope

Upscaling from plot to landscape scale

A

- High-resolution imagery (5cm per pixel)
- 3D model calculation of surface area (B) more accurate than area estimate by plane view (A)
- N₂O flux measurements extrapolated for each outcrop vegetation category

UNIVERSITY OF EASTERN FINLAND

The NOCA Project

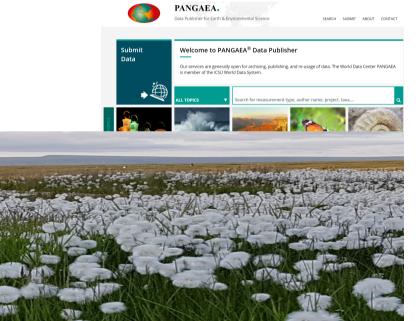
Outlook

- Vegetation maps for the inland and transect sites (in preparation) categorize the 2019 NOCA primary study site Kurungnakh Island based on 2D and 3D UAV imagery
- Measured N₂O fluxes will be extrapolated for each vegetation category area and growing season duration \rightarrow Landscape N₂O budget
- Underlying N₂O production processes investigated and main drivers identified with auxiliary measurements and further incubation studies in the future

Hypotheses:

- Inland, Yedoma with Holocene cover, is a small N₂O emitter covering a large aera of the study site
- Outcrop, thawed Yedoma is a large N₂O emitter covering a small aera of the study site (i.e. hot spot)

N₂O hot spots, due to their intensity, are significant for the permafrost–climate warming feedback loop.



UNIVERSITY OF EASTERN FINLAND

N₂O caught your interest? Stay tuned, coming soon:

- Voigt C, Marushchak ME, Abbott BW, Biasi C, Elberling B, Siciliano SD, Sonnentag O, Stewart KJ, Yang Y, Martikainen PJ: Nitrous oxide emissions from permafrost-affected soils. In final revision, Nature Reviews Earth and Environment.
- NOCA database submitted to PANGAEA® Data Publisher

