Adaptive 2D shallow water simulation based on a MultiWavelet Discontinous Galerkin approach

Daniel **Caviedes-Voullième**¹ Nils **Gerhard**² Aleksey **Sikstel**² Siegfried **Müller**²

(1) Hydrology, BTU (2) Institute of Geometry and Applied Mathematics, RWTH

> EGU General Assembly May 2020

Brandenburg University of Technology Cottbus - Senftenberg

Basic problem

Shallow-water problems in the environment (floods, rivers, coasts) are large spatial domains that require local very high resolution to capture local features which may govern the flow

Basic solution

Dynamic adaptive meshing, capturing the features of the terrain (strong source term in SWE) and the state variables (depth, velocity)

- ad-hoc thresholding for coarsening & refinement
- ensuring conservation, well-balancing
- proper grading of neighbors (2 small neighbours per edge, not more)

Proposed strategy: **MWDG**

- Discontinuous Galerkin (high-order, locality, HPC)
 MultiWavelets to decompose DG solution into multi-resolution data
- Multiresolution analysis to assess what is relevant at each spatial resolution
- Objective, general thresholding strategy
- Flexible, generic, scalable approach for hyperbolic PDEs

Take home message

Dynamically-adaptive scheme which allows to significantly reduce the number of grid cells, while achieving extremely high spatial resolution.

Applicable to complex and realistic shallow water problems, spanning many spatial scales of interest.

The strategy is robust and flexible, requires only a single control parameter, and keeps all the properties of the reference numerical scheme actually solving the equations.

Some background on MWDG

Developed for systems of hyperbolic equations –Euler eqs.– (Hovhannisyan et al., Math. Comput. 2014) (Gerhard et al., Journal of Scientific Computing. 2015) (Gerhard & Müller. Comp. Appl. Math. 2016)

> 0.9 0.8

> 0.2

10

15

20

x (m)

(a) t = 0.0 s

25

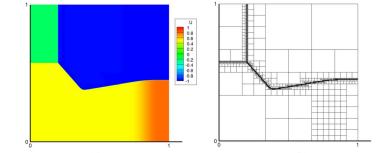
30

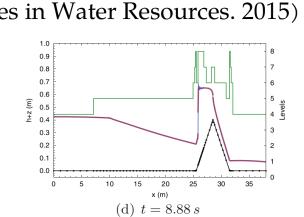
(E) 0.5 [™] 0.4 0.3

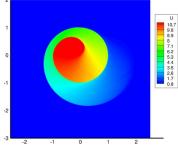
Mathematical formulation and proof for SWE (Gerhard et al., J. Computational Physics 2015)

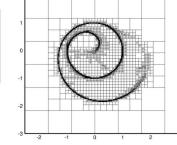
Application and assessment in 1D for SWE (Caviedes-Voullième & Kesserwani. Advances in Water Resources. 2015)

In this work, we show the applicability of MWDG to complex and realistic experimental benchmark cases in two-dimensions.









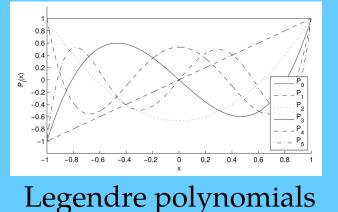
Shallow water equations $\mathbf{u}_t + \nabla \cdot \mathbf{f}(\mathbf{u}) = \mathbf{s}(\mathbf{x}, \mathbf{u})$ $\mathbf{u} = (h, h \mathbf{v})$ $\mathbf{f} = (h \mathbf{v}, h \mathbf{v} \otimes \mathbf{v} + 0.5gh^2 \mathbf{I})$ $\mathbf{s} = (0, -g h (\nabla z + \sigma))$

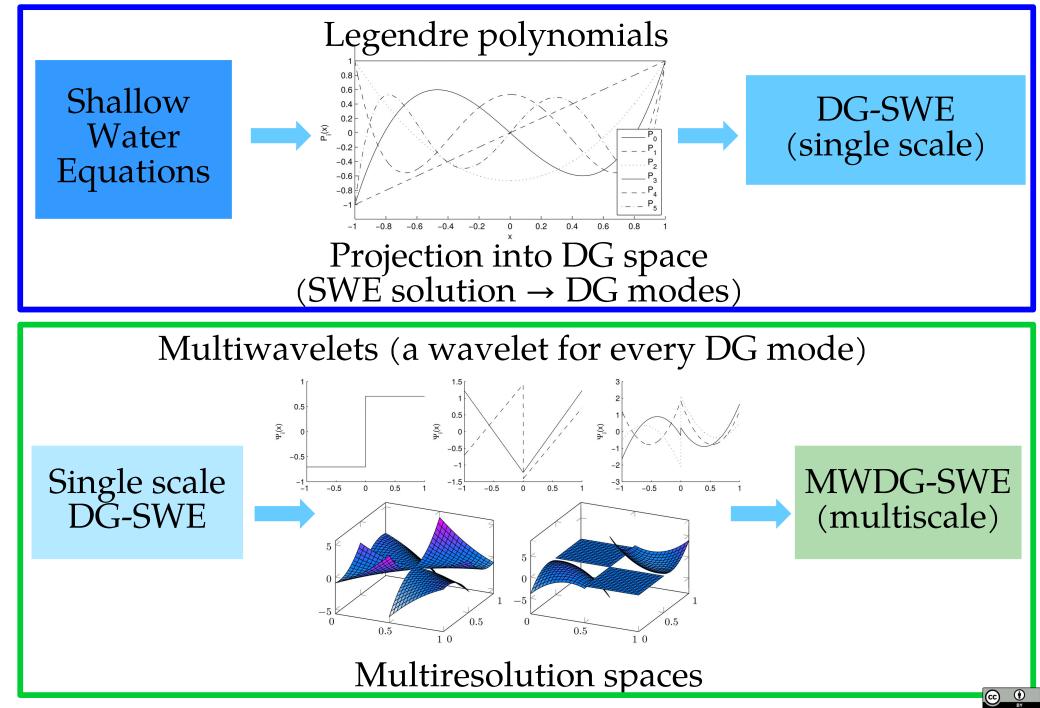
Projection into DG space (SWE solution \rightarrow DG modes)

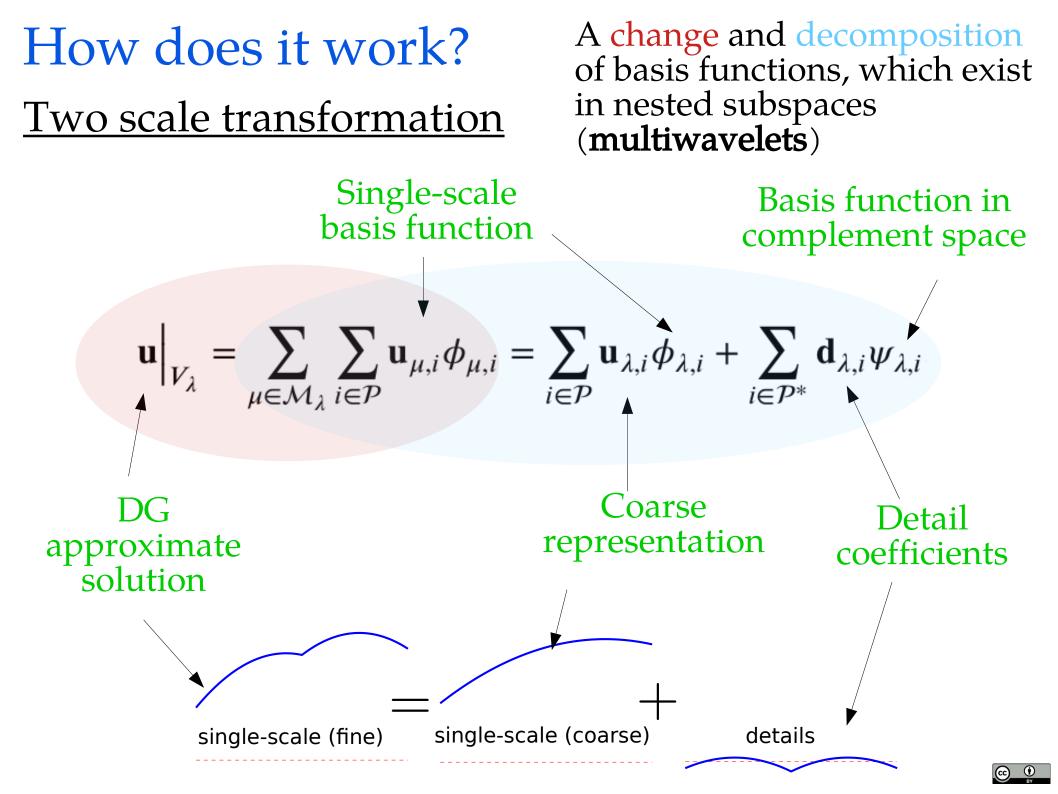
DG-SWE (single scale, "classical" modal DG)

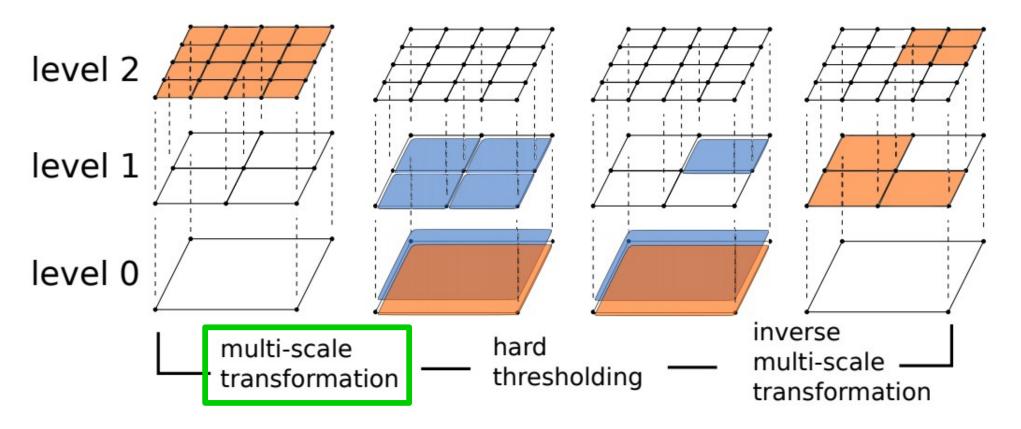
$$\int_{V_{\lambda}} \frac{\partial \mathbf{u}_{h}}{\partial t} \cdot \mathbf{w}_{h} \, d\mathbf{x} - \int_{V_{\lambda}} \mathbf{f}(\mathbf{u}_{h}) : \nabla \mathbf{w}_{h} + \mathbf{s}(\mathbf{x}, \mathbf{u}_{h}) \cdot \mathbf{w}_{h} \, d\mathbf{x} + \int_{\partial V_{\lambda}} \hat{\mathbf{f}} \cdot \mathbf{w}_{h} \, dS = \mathbf{0},$$

Explicit time-integration with Strong-stability preserving Runge-Kutta scheme





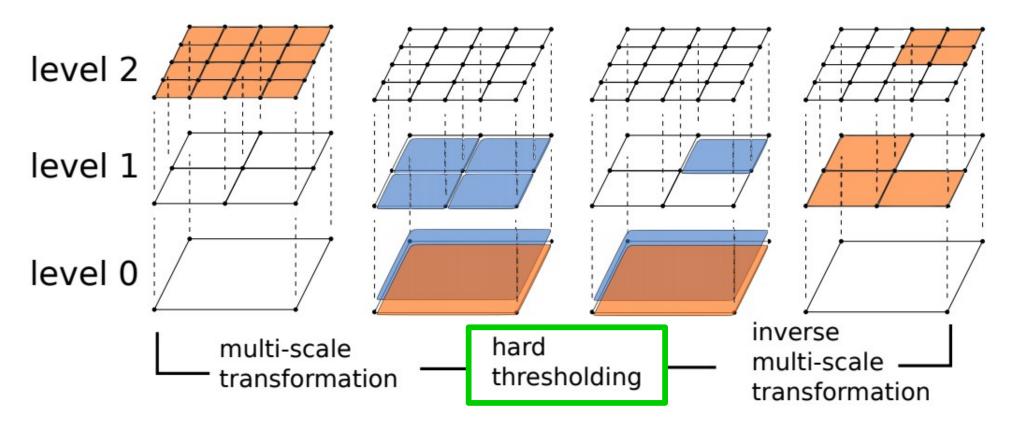




Multiscale transformation is a generalisation of the 2-scale transform.

Decompose fine resolution into coarse data and details across scales

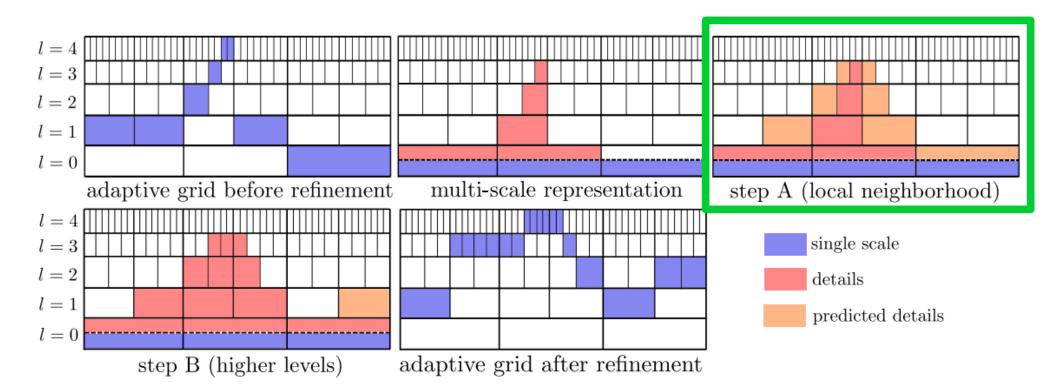
$$\sum_{\mathbf{i}\in\mathcal{I}_{L}^{S}}\mathbf{u}_{\mathbf{i}}\phi_{\mathbf{i}} = \sum_{\mathbf{i}\in\mathcal{I}_{0}^{S}}\mathbf{u}_{\mathbf{i}}\phi_{\mathbf{i}} + \sum_{\ell=0}^{L-1}\sum_{\mathbf{i}\in\mathcal{I}_{\ell}^{W}}\mathbf{d}_{\mathbf{i}}\psi_{\mathbf{i}},$$



Hard thresholding

Identify, in each resolution which details are **significant**, and keep the resolution that ensures that those details are kept. If details are not significant, allow coarsening.

Magnitude of details is normalised across scales and state (conserved) variables, which allows for a **single threshold** to compare against.



Also necessary to predict details in the neighboring cells, as they may become relevant in the next time step.

Shocks in the flow field are always refined to highest level of refinement.

Bed discontinuities are treated as shocks of the z(x,y) field.

Wet/dry fronts are also refined to highest level.

Some features of the method

- MWDG strategy preserves all features of the underlying DG solvers, namely:
 - DG-SWE is flexible in terms of order-of-accuracy. In practice, we don't take it beyond 3rd order.
 - The DG-SWE scheme is locally mass conservative, wellbalanced, can deal with wet/dry interfaces.

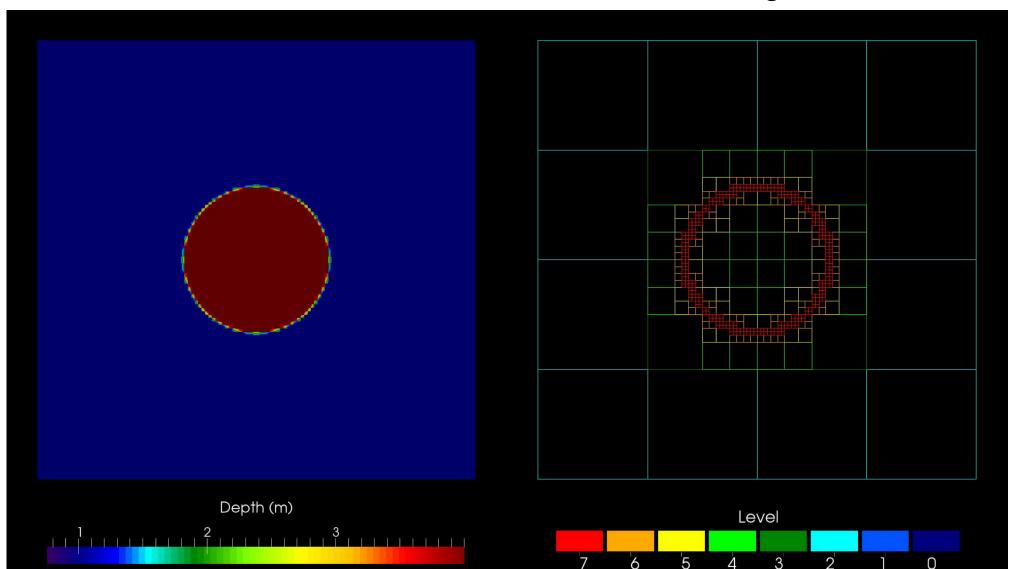
The adaptive scheme has some interesting properties:

- Refinement/coarsening threshold is controlled by a **single parameter**, regardless of number of state variables and levels
- Not constrained by proper grading (only two finer neighbors to a coarser cell, 2:1 ratio)
- Does not require a *fine enough* coarsest mesh, as other strategies.

How does the adaptive grid look?

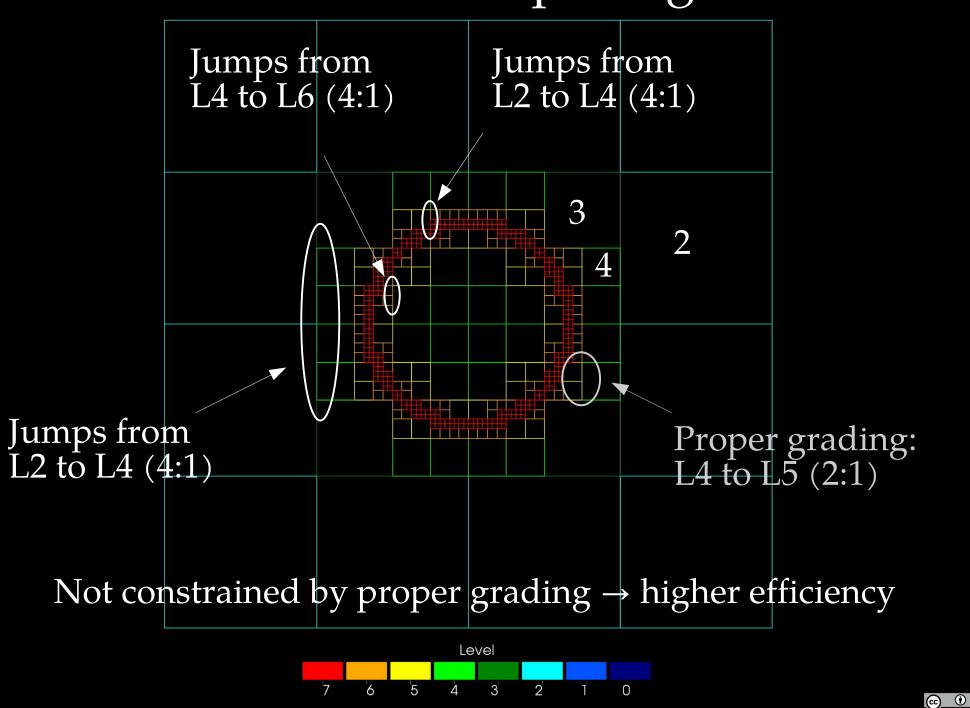
0.756

Circular dam break (frictionless & flat bed → homogeneous PDE)

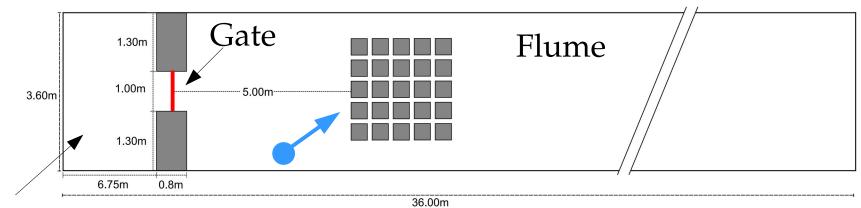


4

Some features of the adaptive grid



Well-known experimental benchmark (Soares-Frazao & Zech, Journal of Hydraulic Research, 2008)



Water reservoir

Solved with MWDG3 (quadratic test functions)

Coarsest mesh (level 0): $90 \times 9 = 810$ cells

Finest mesh (L=6): $5760 \times 576 = 3.3 \times 10^{6}$ cellsdx = 6.25 mmFinest mesh (L=7): $11520 \times 1152 = 13.3 \times 10^{6}$ cellsdx = 3.125 mm

 $\cdot 10^{6}$ 1 10grid L = 60.88 L = 7# cells 0.66 % of ref. 0.44 $\mathbf{2}$ 0.20 0 $\mathbf{2}$ 26 8 104 6 8 104 0 0 t in [s]t in [s]

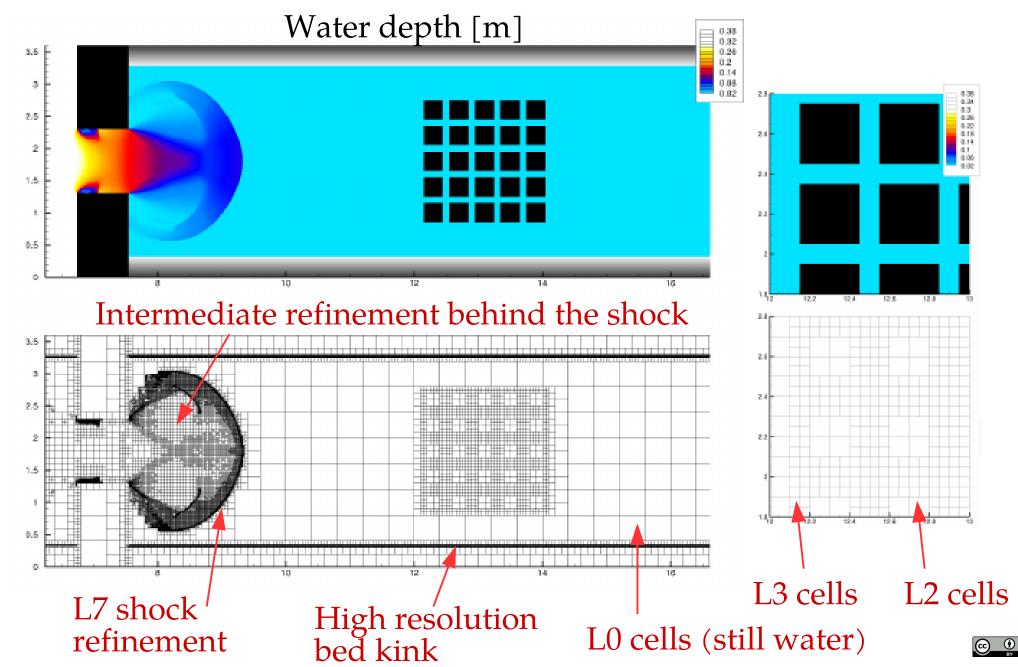
 $L = 6 \rightarrow$ number of computational cells is 7% of equivalent highest resolution mesh (93% reduction, achieving same resolution)

 $L = 7 \rightarrow$ number of computational cells is 4.5% (95.5% reduction, achieving same resolution)

 \odot \odot

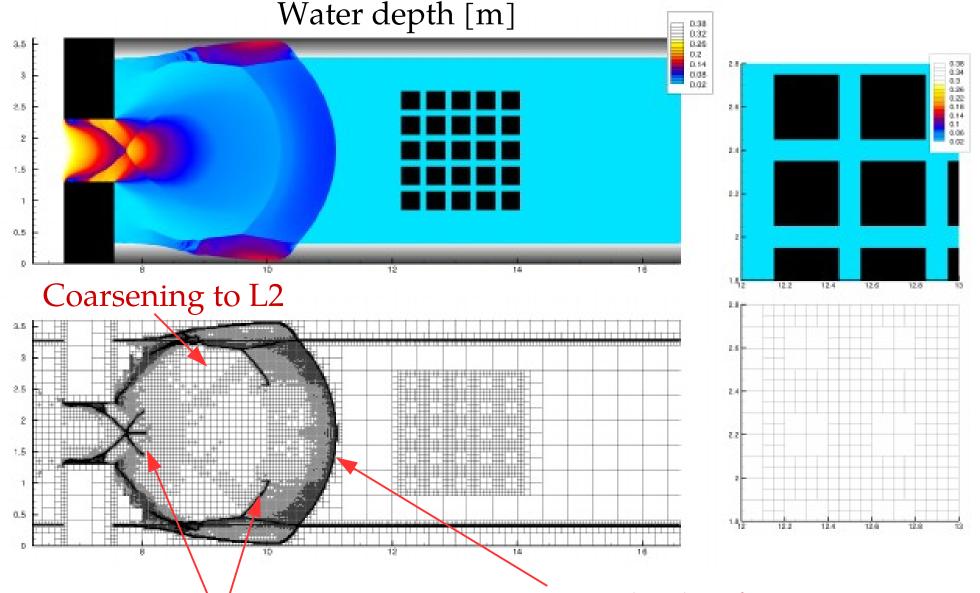
Time: 1.0 s

L = 7 solution





L = 7 solution

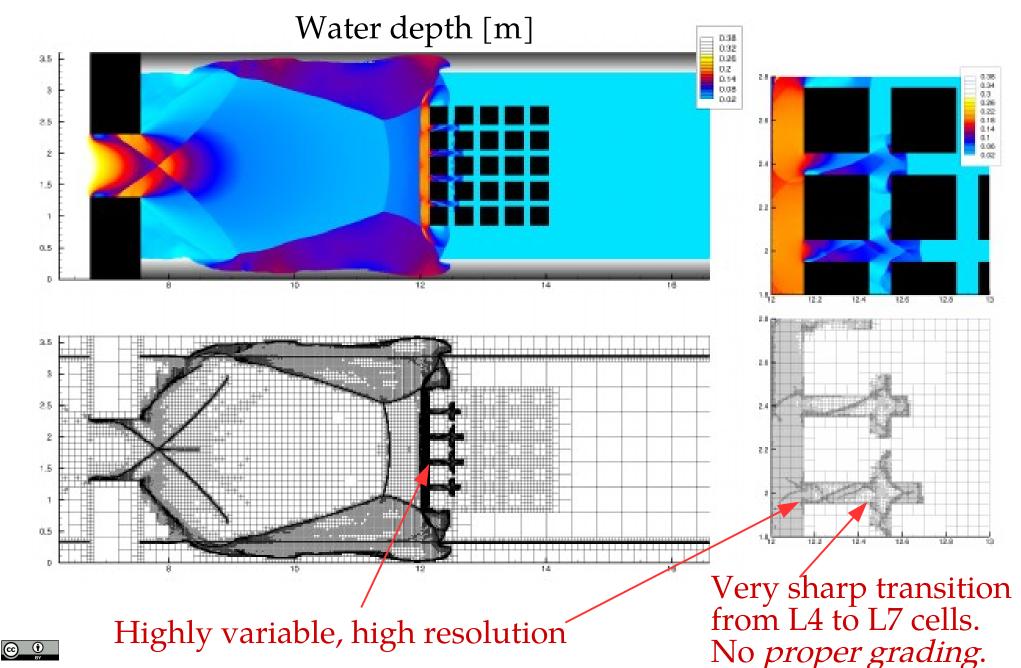


L7 wave interactions / reflections

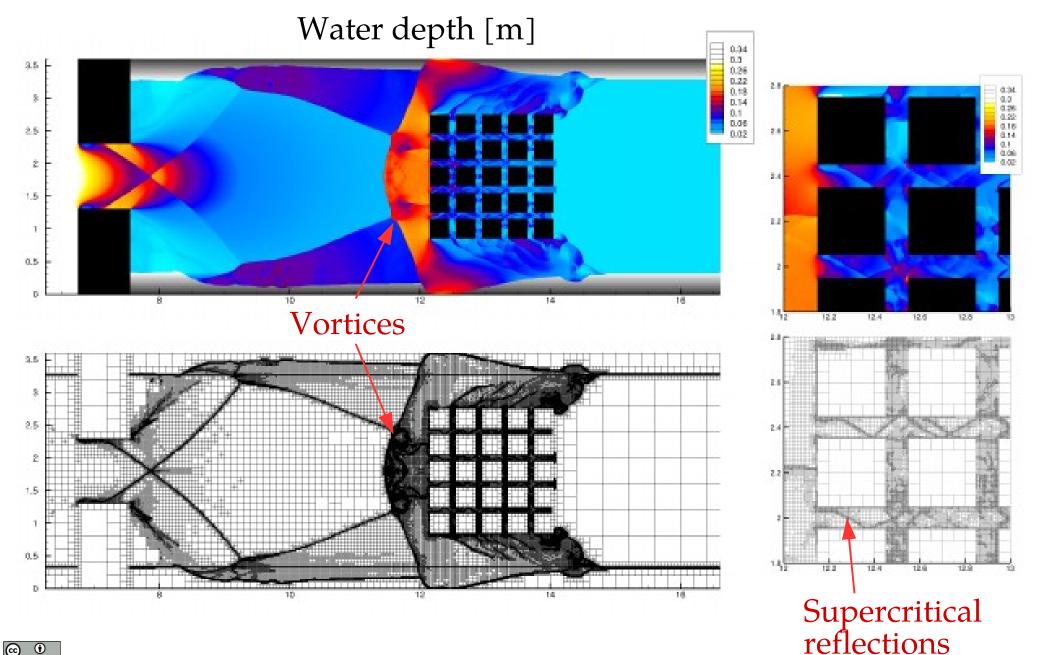
L7 shock refinement

Time: 3.0 s

L = 7 solution

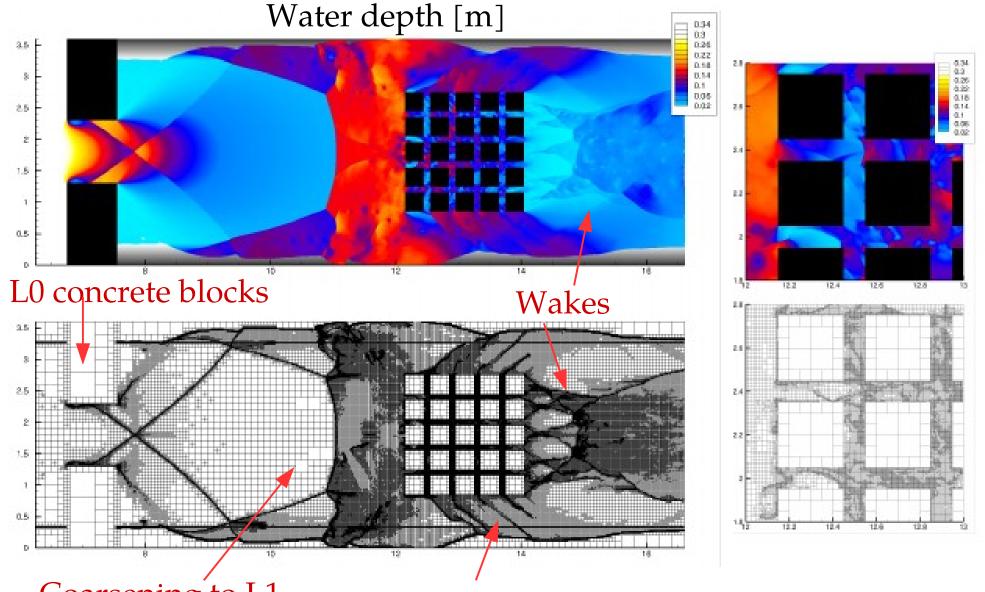


Some results: experimental dam-break L = 7 solution Time: 4.0 s



Time: 7.0 s

L = 7 solution



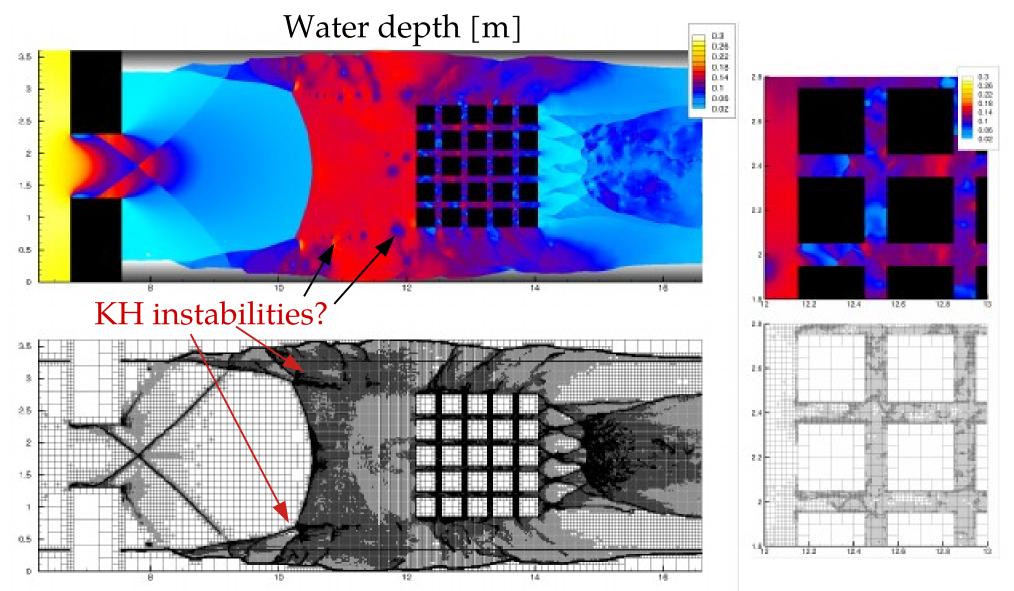
Coarsening to L1

CC I

High resolution jet tracking

Time: 10.0 s

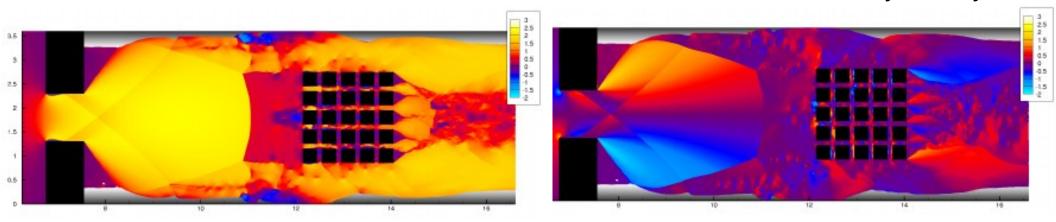
L = 7 solution

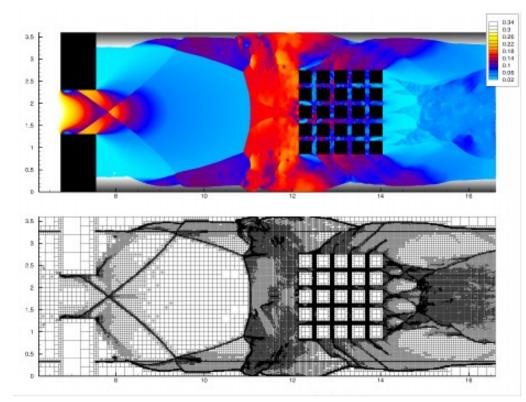


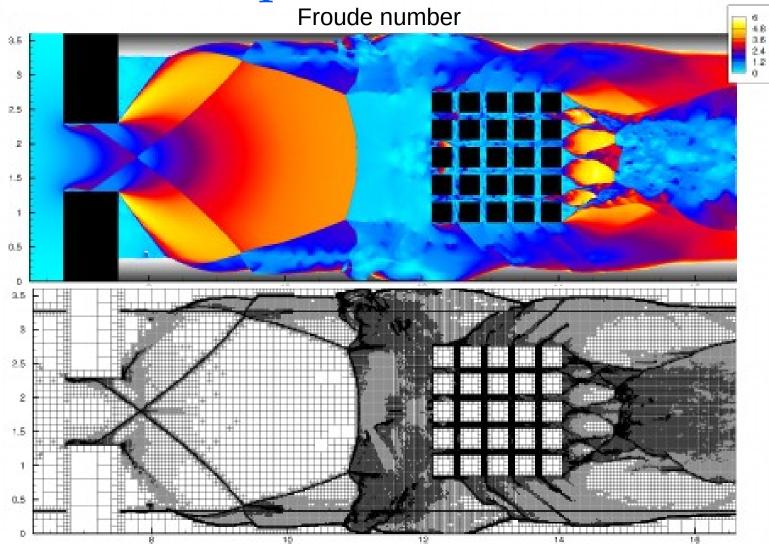
High resolution + High order \rightarrow very little numerical dissipation We can observe complex structures

x-velocity

y-velocity







Froude number provides good insight into the flow regimes and the flow's space of characteristics.

Although the grid is not adapted by the Froude number, it certainly captures its features. Good emergent model property.

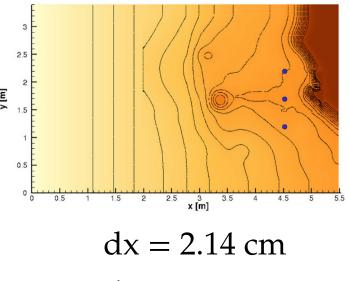
Experimental case of tsunami in Monai valley

http://isec.nacse.org/workshop/2004_cornell/bmark2.html

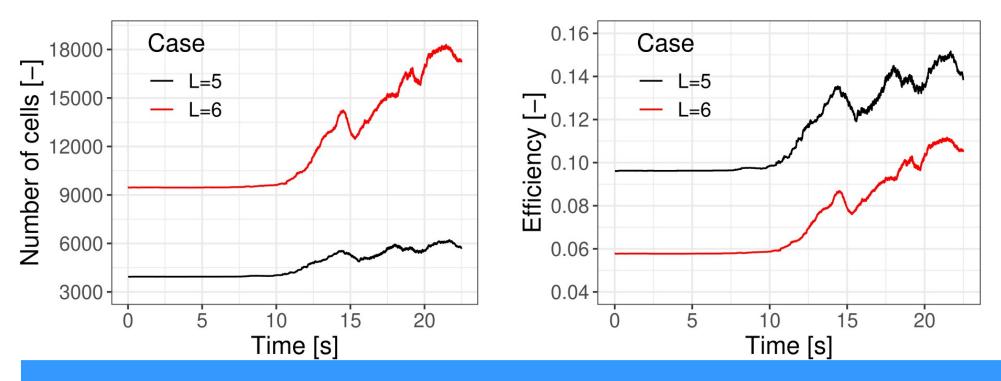
Solved with MWDG2 (linear test functions)

Coarsest mesh (level 0): $8 \times 5 = 40$ cells

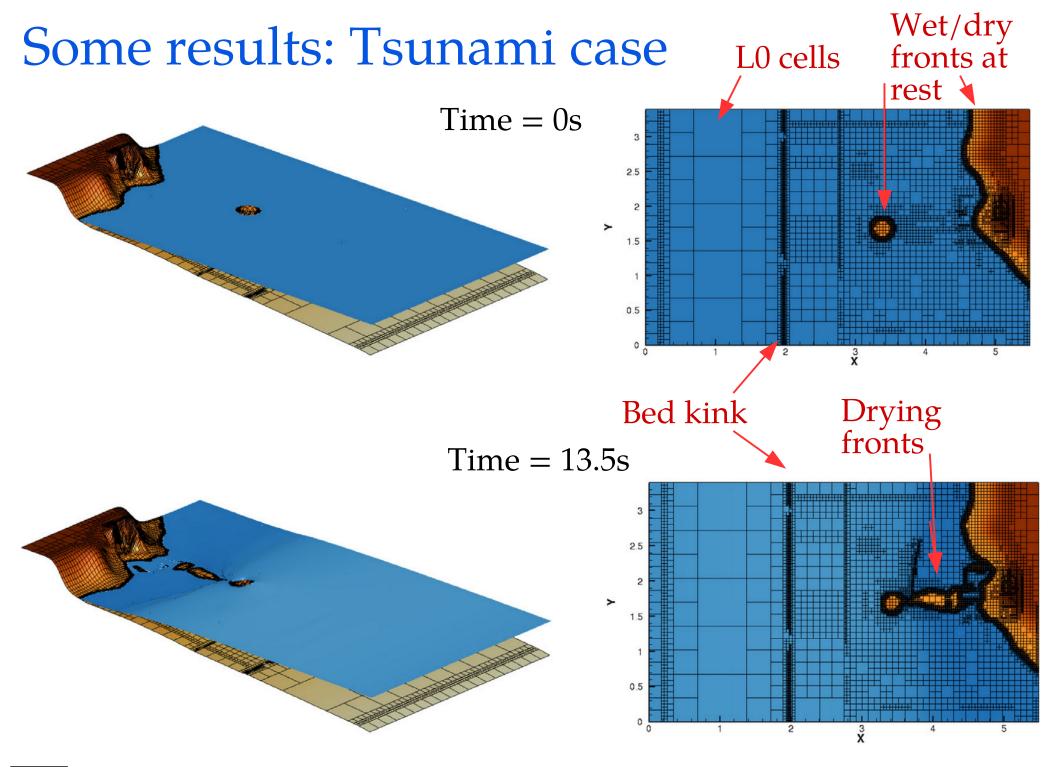
Finest mesh (L=5): $256 \times 160 = 40960$ cells Finest mesh (L=6): $512 \times 320 = 163840$ cells



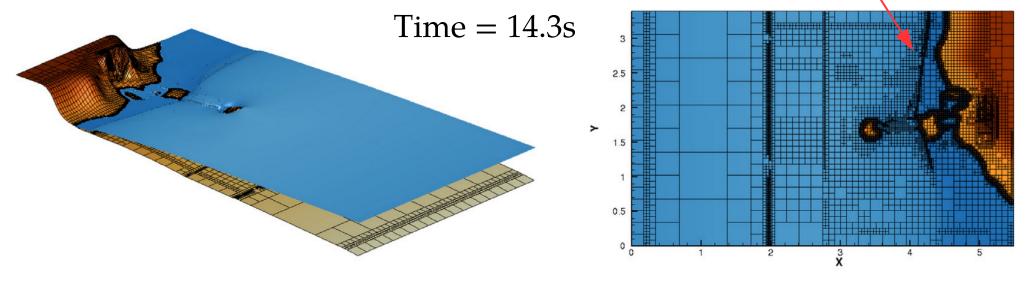
dx = 1.07 cm



For L=6 case, the most expensive instantaneous grid uses only 11% of the size of the reference mesh. For L=5, it is 15%, although L6 results in roughly three times more cells.

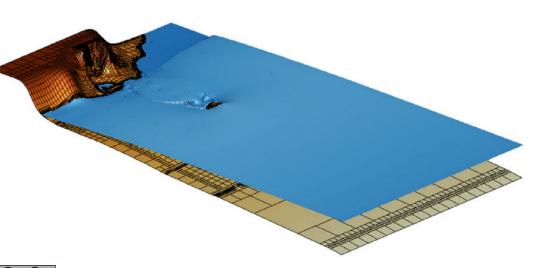


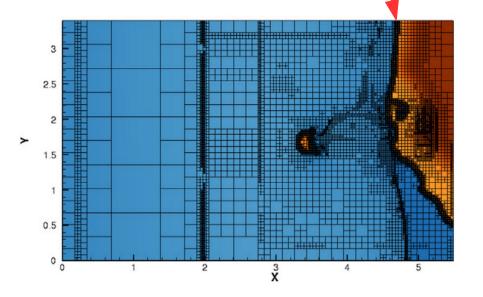
Incoming wave \

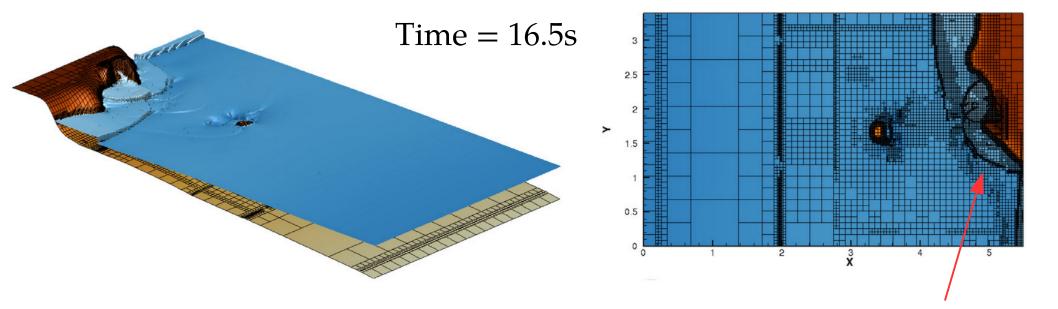


Time = 15.0s

Moving wetting front

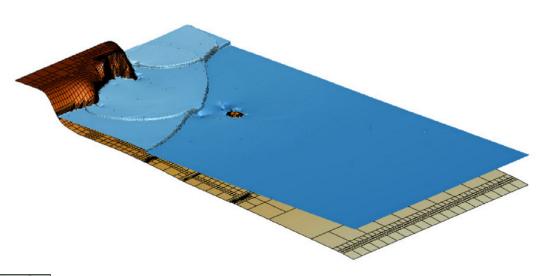


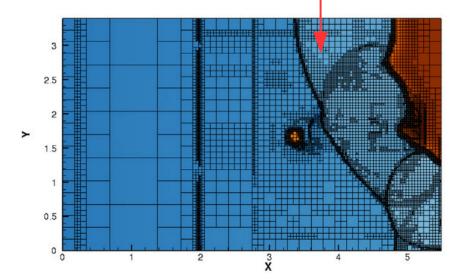




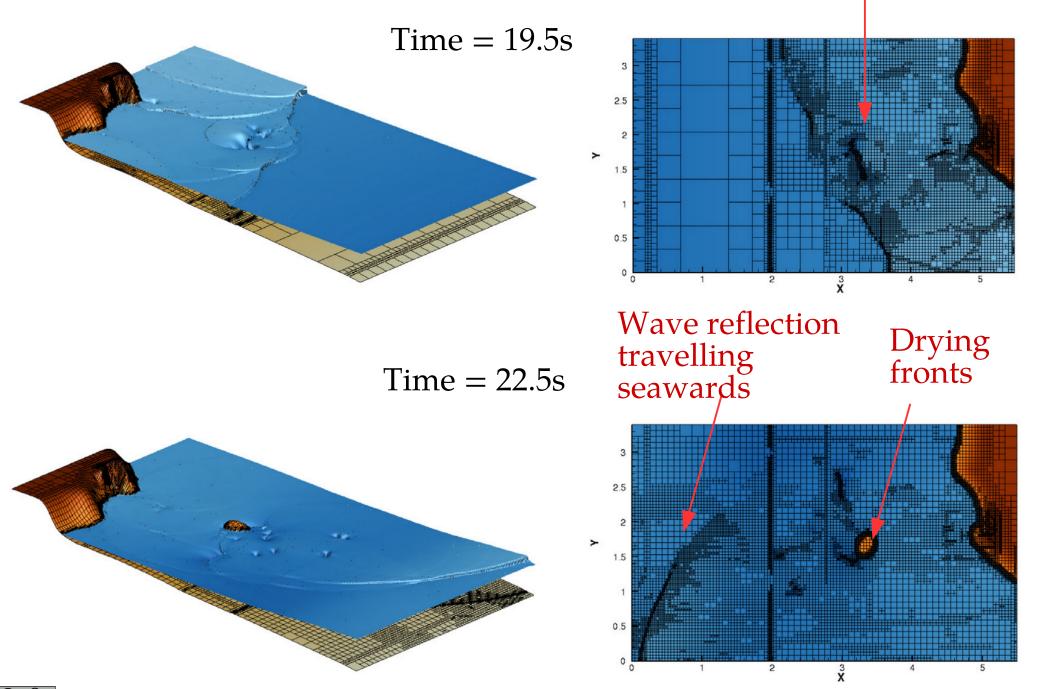
Wave reflections

Time = 18.0s





Flooded island



At the same resolution, MWDG-SWE strategy is more efficient in reducing cell numbers than all other strategies

Cell count normalised by number of cells of L6 reference mesh. <u>Smaller is better</u> for same resolution.

Simulation	Scheme	N _a	δx [m]	η	η̂	η 🕨	Notes
MWDG $L = 5$	DG3	6211	0.0214	0.85	0.04	0.08	DAMR
MWDG $L = 6$	DG3	18139	0.0107	0.89	0.11	0.11	DAMR
Kesserwani and Liang (2012a)	DG2	41843	0.014	0.56	0.26	0.33	DAMR
Hou et al. (2018)	MUSCL	30130	0.014	0.56	0.26	0.33	FAMR cartesian. N_a is estimated
Arpaia and Ricchiuto (2018)	ALE	7000	0.025	_	0.23	0.21	moving mesh
Arpaia and Ricchiuto (2018)	ALE	36911	0.01	-	0.08	0.19	moving mesh
Murillo and García-Navarro (2012)	FV	47432	0.028	-			Uniform triangular
Murillo and García-Navarro (2012)	FV	3035648	0.0035	_	18.5	6.05	Uniform triangular
Gonzàlez et al. (2011)	FV	95256	0.014	-	0.58	0.75	Uniform cartesian
Murillo et al. (2009)	MUSCL	750	0.224	_	0.005	0.096	Uniform triangular
Murillo et al. (2009)	MUSCL	762048	0.007	_	4.65	3.04	Uniform triangular
Morales-Hernández et al. (2014)	FV	23716	0.028	-	0.15	0.38	Uniform cartesian
Morales-Hernández et al. (2014)	FV	94864	0.014	-	0.58	0.76	Uniform cartesian
Vater et al. (2019)	DG2	393216	0.007	-	2.4	1.6	Uniform triangular

Comparison of mesh properties for tsunami case simulations.

Compared to Kesserwani and Liang (2012) and to Hou et al (2018): MWDG L6 is 3 times less cells to achieve even higher resolution

Compared to Vater et al (2019), MWDG L6 results in an order of magnitude reduction in maximum cell numbers, achieving similar resolution

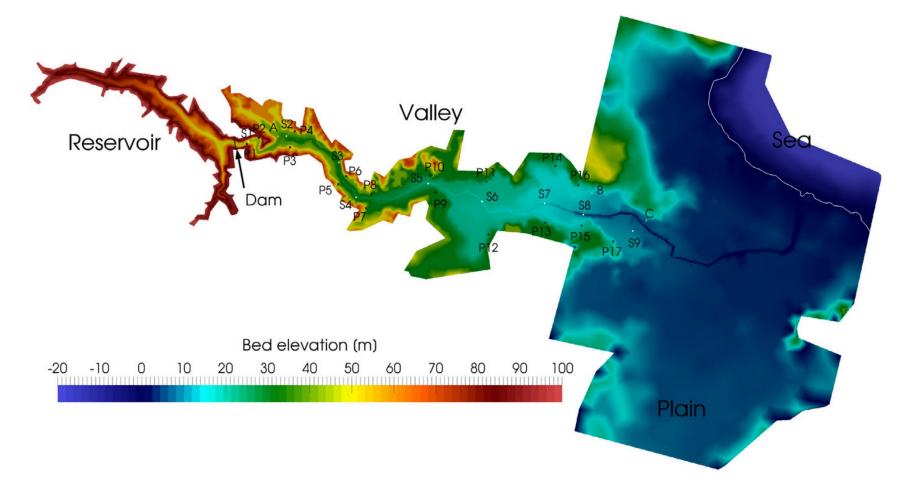
Well-known benchmark test of real dam-break, with field and experimental data

Solved with MWDG2 (linear test functions)

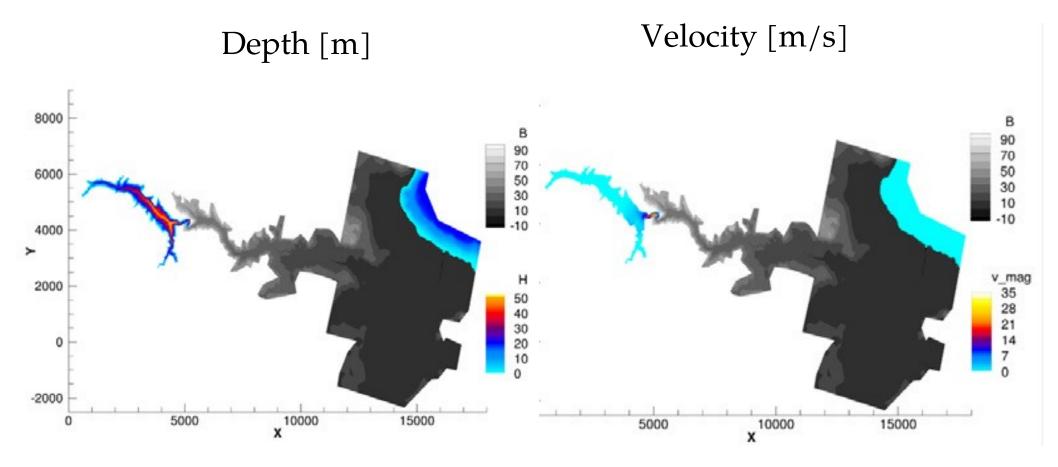
Coarsest mesh (level 0): 27x15 = 405 cells

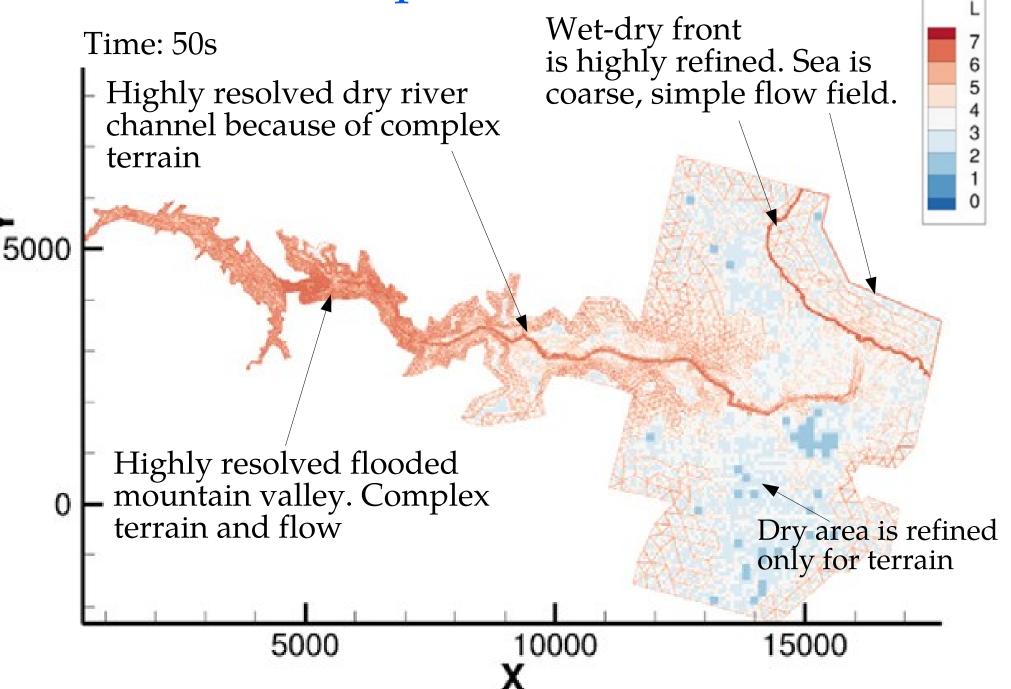
Finest mesh (L=7): $3456 \times 1920 = 6.63 \times 10^{6}$ cells

 $dx = 640 \times 424 \text{ m}$ $dx = 15 \times 3 \text{ m}$

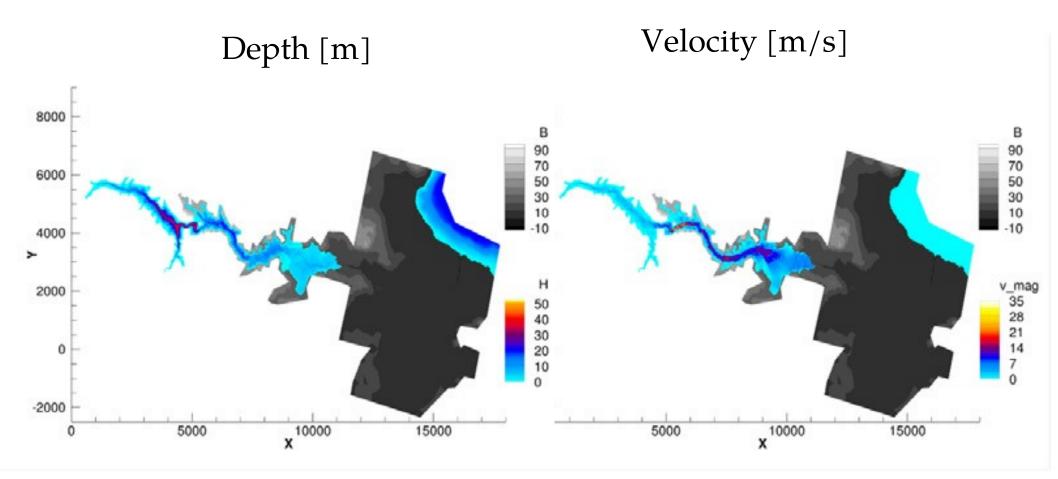


Time: 50s





Time: 1000s



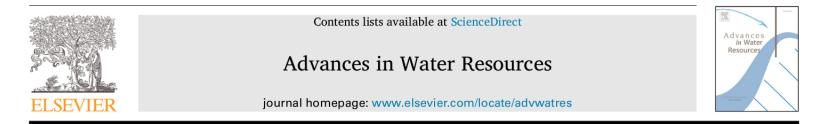
Some results: Malpasset dam-break Time: 1000s 7 6 Wet-dry front 5 is highly refined 4 3 2 5000 0 Flooded area has Dry area is refined intermediate only for terrain, refinement unchanged 5000 10000 15000

Conclusions

- MWDG is applicable to complex and realistic 2D shallow-water problems.
- It is possible to achieve very high resolution and accuracy, otherwise very difficult to achieve with non-adaptive solvers.
- Since the method is not constrained by proper gradient, it can achieve significantly higher efficiency than previous strategies.
- MWDG captures all the good (conservation, well-balancing, wet/dry treatment) features of the underlying reference SWE solver, but also highlights deficiencies (wet/dry limiters, spurious momentum waves).
- Locality of DG allows for high-order solutions without compromising parallelisation.
- Strong reduction in number of cells, together with locality & parallelisation make MWDG competitive with high-order FV solvers.
- Further exploit *hp*-adaptivity also based on multiresolution analysis. Small cells are required at shocks and wet/dry interfaces, but no need for high-order there. This also allows for larger time steps.

More results and details in our paper...

Advances in Water Resources 138 (2020) 103559



Multiwavelet-based mesh adaptivity with Discontinuous Galerkin schemes: Exploring 2D shallow water problems

Daniel Caviedes-Voullième^{a,*}, Nils Gerhard^b, Aleksey Sikstel^b, Siegfried Müller^b

^a Lehrstuhl Hydrologie - Brandenburg University of Technology. Siemens-Halske Ring 8, Cottbus 03044, Germany
^b Institut f
ür Geometrie un Praktische Mathematik. RWTH Aachen University. Templergraben 55, Aachen 52056, Germany

ARTICLE INFO

Keywords: Dynamic adaptive meshing Multiresolution analysis High-order schemes Shallow water equation Discontinuous Galerkin Multiwavelets

ABSTRACT

In Gerhard et al. (2015a) a new class of adaptive Discontinuous Galerkin schemes has been introduced for shallow water equations, including the particular necessary properties, such as well-balancing and wetting-drying treatments. The adaptivity strategy is based on multiresolution analysis using multiwavelets in order to encode information across different mesh resolution levels. In this work, we follow-up on the previous proof-of-concept to thoroughly explore the performance, capabilities and weaknesses of the adaptive numerical scheme in the twodimensional shallow water setting, under complex and realistic problems. To do so, we simulate three well-known and frequently used experimental benchmark tests in the context of flood modelling, ranging from laboratory to field scale. The real and complex topographies result in complex flow fields which pose a greater challenge to the adaptive numerical scheme and are computationally more ambitious, thus requiring a parallelised version of the aforementioned scheme. The benchmark tests allow to examine in depth the resulting adaptive meshes and the hydrodynamic performance of the scheme. We show that the scheme presented by Gerhard et al. (2015a) is accurate, i.e., allows to capture simultaneously large and very small flow structures, is robust, i.e., local grid refinement is controlled by just one parmeter that is auotmatically chosen and is more efficient in terms of the adaptive meshes than other shallow-water adaptive schemes achieving higher resolution with less cells.

