```
F_stepno, phy_timing, p_ni, p_nj, p_nk, pslic,LDIST_DIM
                                                                                                                                                                                   f
                 x2, x1, x3, x4
        lag3(xx; x3, x1, x2, x4)
         aqB(xx. x4. x1. x2. x3)
              onn(Phy busyol3D(()
                                                                         /tt(1,k)).
                (Physbusper3D(()
              w3*F fld t(i.i.
      in = time base()
w2 = (Ver_z_8%t(k)-Ver_z_8%m(k)) / (Ver_z_8%t(k)-Ver_z_8%t(k+1))
                                                                        //tt(i,k)
                                                                       /tt(1,k))
                                                           * exp(
        fld m(i,j,k) = w2*F fld
                                                                      /tt(i,k))
                                                           + exp
                                                                      )/tt(i.k))
    (Ver z 8‰m(k)-Ver z 8%t(k+1)) / (Ve
                                           z 8%t(k)-Ver z 8%t(k+1
            OMA
```

i,j,k 016 TRACE

Explanation for the increase in high altitude water on Mars observed by NOMAD during the 2018

global dust storm

Lori Neary, F. Daerden, S. Aoki, J. Whiteway, R. T. Clancy, M. Smith, S. Viscardy, J. T. Erwin, I. R. Thomas, G. Villanueva, G. Liuzzi, M. Crismani, M. Wolff, S. R. Lewis, J. A. Holmes, M. R. Patel, M. Giuranna, C. Depiesse, A. Piccialli, S. Robert, L. Trompet, Y. Willame, B. Ristic, A. C. Vandaele Royal Belgian Institute

FOR SPACE AERONOMY

Introduction

- 2018 (MY34) global dust storm characteristics:
 - very rapid onset close to equinox
 - zonal mean optical depths > 2 @ 9.3 μ m

- TGO NOMAD saw increased H₂O vapour at high altitudes (40-100 km)
- Can we model this increase with the **GEM-Mars GCM***?

*<u>General Circulation Model</u> - 3D numerical simulation of the atmosphere

Modelling approach

- GEM-Mars has option to run with 'free dust' (lifting by saltation, dust devils) or scale to a climatology
- As expected, 'free dust' scenario does not result in transport of H₂O vapour to high altitudes
- Using Montabone et al. (2019) scenario (daily maps):
 - Scaling total column dust optical depth to climatology made a difference, but not enough
 - Maybe it is the vertical distribution of dust?

RA•IASB

Vertical distribution of dust in GEM-Mars

2 ways to define dust in vertical:

RA•IASB

- Allow dust to be mixed by eddy diffusion, global circulation
- prescribe the profile
 using method of Conrath,
 1975

$$q = q_0 \exp\left\{\nu \left[1 - \left(\frac{p_{ref}}{p_s}\right)^{70/z_{max}}\right]\right\}$$

Discussion

- Both GDS cases show
 increased Hadley
 circulation but it is not
 enough to transport
 H₂O
- ▶ In the GDS0008 case, more dust above 40 km
 ⇒ increased
 temperatures ⇒ less
 water ice cloud
 formation

Implications for hydrogen escape

- Ratio of GDS/nonGDS simulated H₂O and H from L_s 160°-280° between 30° N/S
- ► $H_2O + h_V \rightarrow H + OH$ rate above 80 km ~1-3x10⁻⁶ s⁻¹ \implies lifetime ~ 3-11 sols

Summary

RA•IASB

- Vertical distribution of dust is a key factor for the transport of water vapour through the equatorial hygropause
- Stronger Hadley circulation alone does not explain transport of H₂O to high altitudes
- Increase in temperatures due to dust above 40 km prevents water ice clouds from forming, allowing H₂O to be transported to heights of 70-100 km
- Due to strong H₂O photodissociation above 80 km, we simulate an increase in H a few days after the onset of the dust storm

www.aeronomie.be Lori.Neary@aeronomie.be @GEM_Mars_Model @Modeller_Lori

More about TGO NOMAD @ EGU: S. Viscardy D3009 (this session) A. Piccialli D3036 (10:45 today) A. C. Vandaele D3033 (10:45 today)

This work can be found in Neary et al., 2019, GRL https://doi.org/10.1029/2019GL084354