

Comparison of two metamodeling approaches for sensitivity analysis of a geological disposal model

Sabine M. Spiessl^a, Sergei Kucherenko^b

^aGesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Repository Safety Department, Final Disposal Division, Braunschweig, Germany; ^bCPSE, Imperial College London, London, UK

EGU 2020 – Sharing Geoscience Online

Motivation

 Comparison of the RS-HDMR and BSPCE metamodeling approaches on the basis of higher order indices

Outline of the Presentation

- Introduction
- Metamodelling Approaches
 - RS-HDMR
 - BSPCE
- Repository Models
 - LILW Test Case
- Results
 - LILW6 Model
 - SI1
 - SIT
 - R²
 - LILW11 and LILW20 Models
- Summary and Conclusions

Introduction

- Advanced methods of global sensitivity analysis can identify both individual effects of model parameters and parameter interactions by computing Sobol' sensitivity indices
- Better understanding of parameter interactions may help to better quantify uncertainties of repository models, which can behave in a highly non-linear, non-monotonic or even discontinuous manner
- Sensitivity indices may efficiently be estimated by the Random-Sampling High Dimensional Model Representation (RS-HDMR) and Bayesian Sparse PCE (BSPCE) metamodeling approaches
- The RS-HDMR approach also belongs to a wider class of methods known as polynomial chaos expansion (PCE)
- PCE methods are based on Wiener's homogeneous chaos theory published in 1938
- PCE is a widely used approach in metamodeling

Random Sampling - High Dimensional Model Representation (RS-HDMR)

A metamodel can be built using HDMR considering only low order terms in the ANOVA decomposition. Typically these terms are dominant in ANOVA.

$$f(t,x) \approx h(t,x) = f_0 + \sum_{i=1}^d f_i(t,x_i) + \sum_i \sum_{j>i} f_{ij}(t,x_i,x_j)$$

x is a vector of independent input variables f(t,x) is integrable

Decomposition using a complete basis set of orthonormal polynomials results in: $_{\infty}$

$$f_i(t, x_i) = \sum_{r=1}^{\infty} \alpha_r^i(t) \varphi_r(t, x_i)$$
$$f_{ij}(x_i, x_j) = \sum_{p=1}^{\infty} \sum_{q=1}^{\infty} \beta_{pq}^{ij}(t) \varphi_{pq}(t, x_i, x_j)$$

 $\varphi_r(t, x_i), \varphi_{pq}(t, x_i, x_j)$: Sets of 1D/2D basis functions

 $\alpha_r^i(t), \beta_{pq}^{ij}(t)$:

Coefficients of decomposition

From the orthogonality of the basis functions it follows that

$$\alpha_{r}^{i}(t) = \int_{0}^{1} f_{i}(t, x_{i})\varphi_{r}(t, x_{i})dx_{i} \qquad r = 1, \dots, k$$

$$\beta_{pq}^{ij}(t) = \int_{0}^{1} \int_{0}^{1} f_{i}(t, x_{i})\varphi_{p}(t, x_{i})\varphi_{q}(t, x_{j})dx_{i}dx_{j} \qquad p = 1, \dots, l, q = 1, \dots, l'$$

For practical purposes the summation in

Coefficients of the decomposition can be used to evaluate Sobol' sensitivity indices as:

$$SI1 = \hat{S}_{i}(t) \approx \frac{\int_{0}^{t} V_{i}(t') dt'}{\int_{0}^{t} V(t') dt'} \approx \frac{\int_{0}^{t} \sum_{r=1}^{k} (\alpha_{r}^{i}(t'))^{2} dt'}{\int_{0}^{t} V(t') dt'}$$

 $SI2 = \hat{S}_{ij}(t) \approx \frac{\int_{0}^{t} (\sum_{p=1}^{l} \sum_{q=1}^{l'} (\beta_{pq}^{ij}(t'))^{2}) dt'}{\int_{0}^{t} V(t') dt'}$ Second

 $SIT = \hat{S}_i^T(t) \sim \hat{S}_i(t) + \sum_{j \neq i} \hat{S}_{ij}(t)$ Total

5

 $f_{ij}(t, x_i, x_j) \approx \sum_{p=1}^{j} \sum_{q=1}^{j} \beta_{pq}^{ij}(t) \varphi_p(t, x_i) \varphi_q(t, x_j)$

First

Bayesian Sparse Polynomial Chaos Expansion Method (BSPCE)

More efficient?!?

Usually only a few terms are relevant in the PCE structure

The Bayesian Sparse PCE method (BSPCE) makes use of sparse PCE

Selection of the proposed PCE structure is based on a Bayesian approach using the Kashyap information criterion for model selection

RS-HDMR and **BSPCE**

http://www.imperial.ac.uk/process-systems-engineering/research/freesoftware/sobolgsa-software/

Generic PA Testmodel

Based upon real LILW repository in an abandoned salt mine <u>Near field model</u>: substantially simplified structure

Model Parameters

LILW6 Model

Parameter	Unit	Description	Distribution Type	Minimum µ(¹) Peak(³)	Maximum σ(²)
IniPermSeal	[m²]	Initial permeability of dissolving seal	Normal	3.23·10 ⁻²¹ 41.0605 ⁽¹⁾	6.7·10 ⁻¹⁶ 1.9809 ⁽²⁾
AEBConv	[-]	Factor of local convergence variation in the sealed emplacement chamber	Log uniform	0.05	5
GasEntryP	[MPa]	Gas entry pressure	Uniform	0	2.5
GasCorrPE	[1/yr]	Corrosion rate of organics	Log normal	10 ⁻⁷ -12.6642 ⁽¹⁾	10 ⁻⁴ 1.1177 ⁽²⁾
RefConv	[1/yr]	Reference convergence rate	Log uniform	10 ⁻⁵	10 ⁻⁴
TBrine	[yr]	Brine intrusion time	Log normal	848.4 8.8857 ⁽¹⁾	61573 0.6933 ⁽²⁾

(1) µ value(*)

(2) σ value with quantiles of 0.001 and 0.999(*)

(*) μ and σ values describe mean value and standard deviation of a normal or lognormal distribution

LILW11 and LILW20 Models

LILW11 model = LILW6 model + 5 additional parameters LILW20 model = LILW11 model + 9 additional parameters

SI1 Results – LILW6 Model

Good agreement of the SI1 results obtained from the BSPCE approach with the ones from the RS-HDMR approach with optimal choice of polynomial coefficients and 16384 runs can already be obtained with 1024 runs

SIT Results – LILW6 Model

While SI1 indices for both approaches agree well starting from 1024 runs, there are increasing differences in the SIT indices obtained from the BSPCE approach for sets with more than 1024 runs

→ Interaction effects higher than second order in the systems ?!?

1024 runs

16384 runs

Results – Metamodel Error (R²) - LILW6 Model

R² obtained from the BSPCE approach increases with increasing number of runs

Different sets of runs

1024 versus 16384 runs

SI1 Results – LILW11 and LILW20 Models

As for the LIW6 model, good agreement of the SI1 results obtained from the BSPCE approach with the RS-HDMR approach with optimal choice of polynomial coefficients and 16384 runs can already be obtained with 1024 runs for the LILW11 and LILW20 models as well

BSPCE: 1024 runs

LILW6

LILW11

LILW20

SIT Results – LILW11 and LILW20 Models

As for the LIW6 model, good agreeing SIT results of the BSPCE approach with the RS-HDMR approach with optimal choice of polynomial coefficients and 16384 runs can already be obtained with 1024 runs

BSPCE: 1024 runs

LILW6

LILW20

SIT Results – LILW11 and LILW20 Models

As for the LIW6 model, there are increasing differences in the SIT indices obtained from the BSPCE approach for the sets with more than 1024 runs for the LILW11 and LILW20 models as well

BSPCE: 16384 runs

LILW6

LILW20

Results – Metamodel Error (R²) – LILW11 and LILW20 Models

As for the LILW6 model, R² obtained from the BSPCE approach increases with increasing number of runs for the LILW11 and LILW20 models as well

BSPCE: Different sets of runs

LILW6

LILW11

R² decreases with number of parameters considered

Summary and Conclusions

- For all three repository models with different number of parameters (6, 11 and 20),
 - good agreement of the SI1 results obtained from the BSPCE approach in comparison with the ones from the RS-HDMR approach with optimal choice of polynomial coefficients and 16384 runs can already be obtained with 1024 runs
 - however, there are increasing differences in the SIT indices obtained from the BSPCE approach for the sets with more than 1024 runs => hint for the existence of third- or higher-order effects (BSPCE approach takes account of all orders of interaction while RS-HDMR only up to second order) ?
 - R² obtained from the BSPCE approach increases with increasing number of runs. Though, R² decreases with number of parameters considered
- Based upon the presented results, the question arises how many simulations do we need for building appropriate metamodels for the estimation of reliable indices higher order, especially for cases with many parameters or uncertainties?

THANK you for your Attention

Questions?

Supported by:

Federal Ministry of Economics and Energy

on the basis of a decision by the German Bundestag