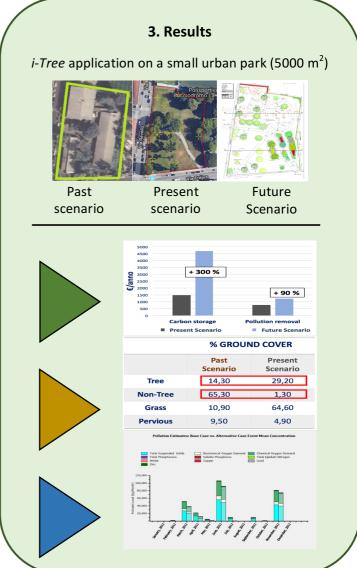

Ecosystem services determination on an Italian urban greenspace

Francesco Busca⁽¹⁾ and Roberto Revelli⁽²⁾

(1) PhD in Civil and Environmental Engineering – DIATI, Polito (Italy)
(2) Full Professor – DIATI, Polito (Italy)

1. Introduction and motivation


- Ecosystem services are defined as "multiple benefits provided by ecosystem to humans" (MEA, 2005)
- The aim is to deepen an effective method to evaluate ES provided by vegetation and to test it on on a small urban greenspace

-Provision of a territorial planning tool for urban greenspaces based on an economic analysis

Acknowledgments

Thanks to the Municipality of Turin, especially Simone Mangili (Department of Policies for the Environment and Public Green) and Matteo Castiglioni (Public Green Service), for the kind support given, through the supply of data and information. Thanks to Francesca Vigliocco for the support provided during the measurement campaign.

General Assembly 2020

> POLITECNICO DI TORINO

References

Brauman, K.A., Daily, G.C., Ka'eo Duarte, T. & Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services, California, Hawaii, 2007.

Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis, Island Press, Washington, DC, 2005.

PhD in Civil and Environmental Engineering

Ecosystem services determination

on an Italian urban greenspace

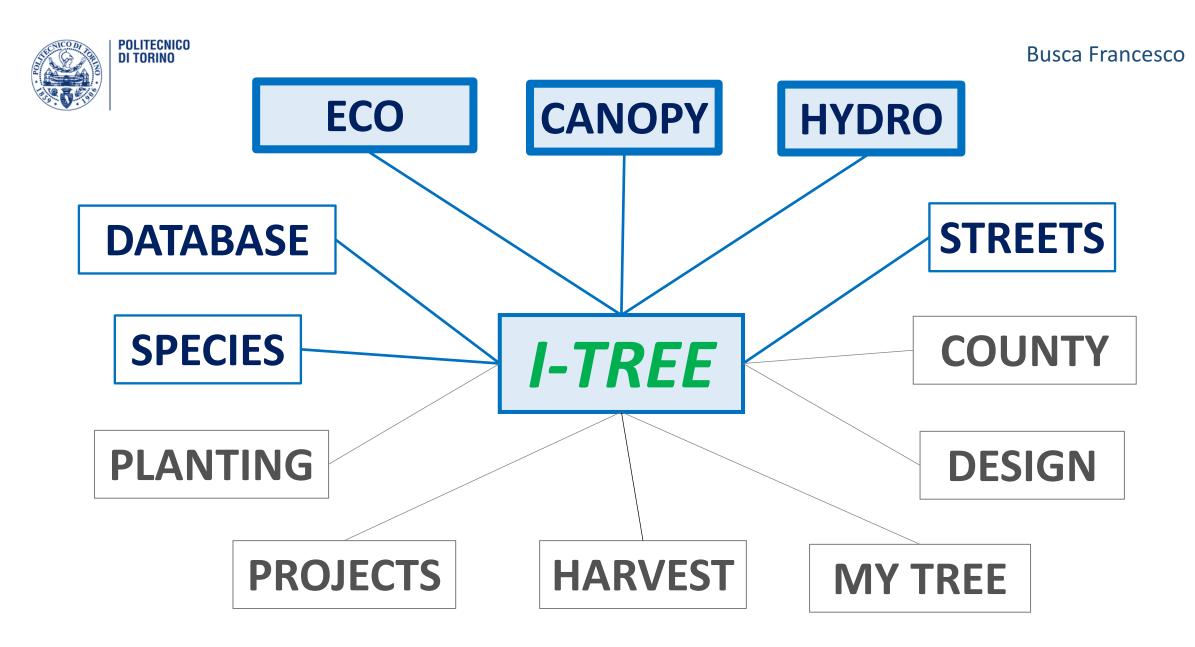
EGU2020: Sharing Geoscience Online

POLITECNICO

DI TORINO

Phd student: Francesco Busca

Supervisor: Prof. Roberto Revelli



Ecosystem services

«Multiple benefits provided by ecosystems to humans» (MEA, 2005)

Types		
PROVISIONING SERVICES	REGULATING SERVICES	
Consumer goods withdrawable from ecosystems	Regulation of ecosystem processes	
SUPPORTING SERVICES	CULTURAL SERVICES	
Required for realization of all other services	Intangible benefits (related to music, architecture)	

Application: "Via Revello" Park - Turin

Past Scenario (T0)

- Land use: Residential
- Ground cover: buildings and impermeable ground

Present Scenario (T1)

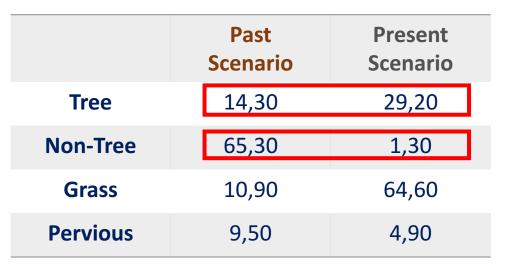
- Land use: Park
- Ground cover: grass, draining soil, trees
- **Trees**: 13

Future Scenario (T2, after March 2020)

- Land use: Park
- Ground cover: grass, draining soil, trees
- Trees: 25 (and 16 shrub types)

i-Tree Canopy

INPUT


Scenarios comparison

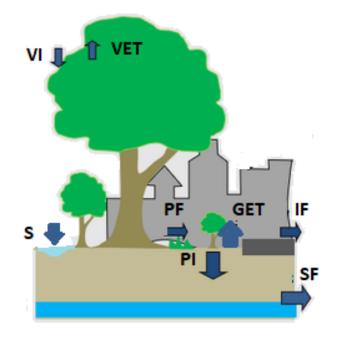
- Site map (Google Maps or as shapefile)
- Locality data (U.S.)
- Ground cover types

OUTPUT

- % Ground cover for each type
- Economic value of pollutants removal [€]

% GROUND COVER

Water Balance

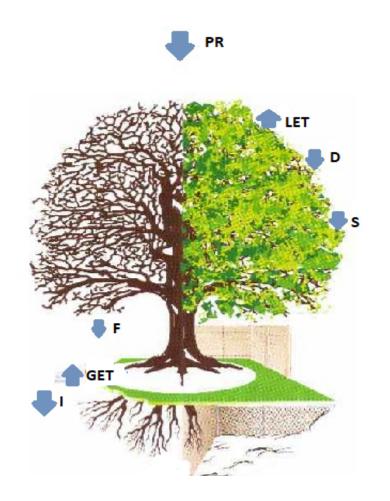

• At "Park" Scale:

PR = VET + VI + S + PI + PF + IF + SF + GET

con:

- PR (Precipitation),
- VET (Vegetation Evapotranspiration);
- VI (Vegetation Interception);
- S (Depression Storage);
- PI (Pervious Infiltration);
- PF (Pervious Flow);
- IF (Impervious Flow);
- SF (Subsurface Flow);
- GET (Ground Evapotranspiration).

<u>i-Tree Hydro</u>


Water Balance

• At "Tree" scale:

PR = LET + D + S + FF = GET + I

where:

- PR (Precipitation);
- LET (Leaf Evapotranspiration);
- D (Leaf Deposition);
- S (Leaf Storage);
- F (Falling Water);
- GET (Ground Evapotranspiration);
- I (Infiltration).

<u>i-Tree Hydro</u>

Project: Watershed/Non-Watershed

INPUT

- Location data (U.S.)
- Simulation time period
- Topographical data (DEM o TI)
- Meteorological data (annuali)
- Calibration data
- Area extension [mq]
- DCIA
- OUTPUT i-Tree Canopy
- Canopy parameters (*Eco*)
- Hydrological parameters

OUTPUT

- Water Quantity
- Water Quality
- Advanced Outputs:
 - Vegetation Hydrology
 - Subsurface Hydrology

i-Tree Hydro

Water Quantity

Vegetation Hydrology

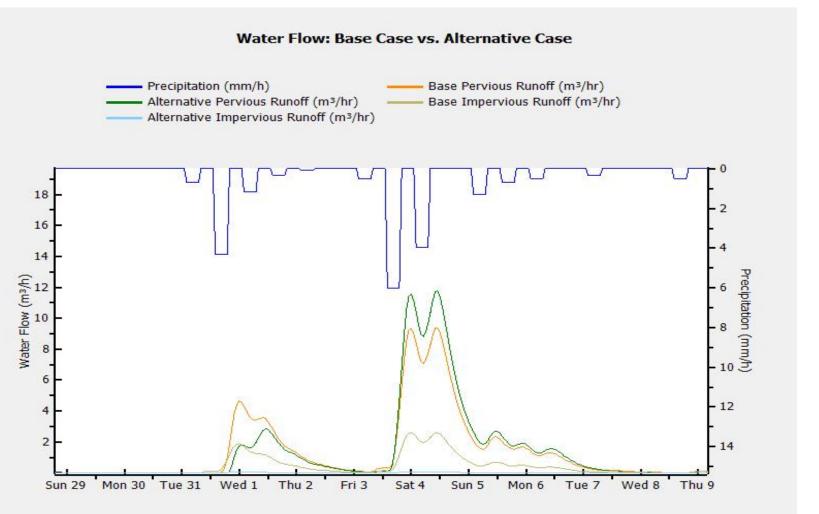
Balance

TS = PF + IF + B

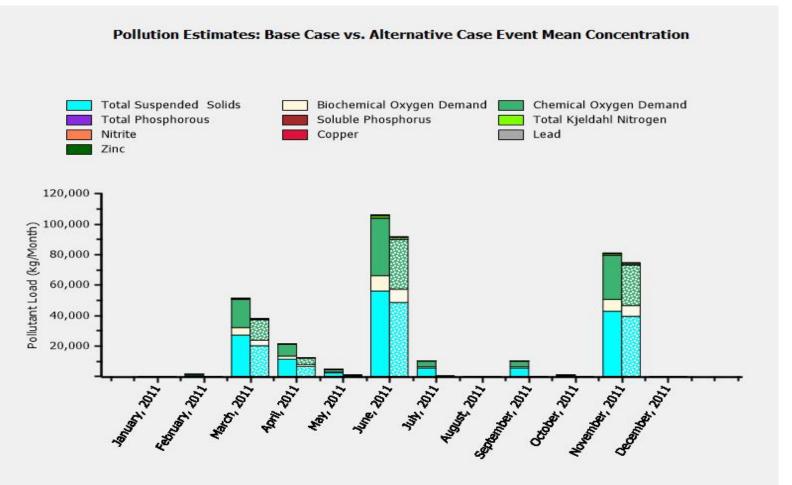
TS (Total Streaflow), PF (Previous Flow), IF (Impervious Flow), B (Baseflow) VP = f(I, VET, D, F, GET)

con VP (Precipitation), I (Interception), VET (Vegetation Evapotranspiration), D (Leaf Deposition), F (Falling Water), GET (Ground Evapotranspiration)

Scenarios		Past Scenario	Present Scenario
Comparison	Pervious [m ³ /h]	10,0	12,0
	Impervious [m ³ /h]	3,0	0,5


	Past Scenario	Present Scenario
Falling Water [m ³ /h]	8,0	27,0
Deposition [m ³ /h]	0,5	3,0

<u>i-Tree Hydro</u>


1) WATER QUANTITY

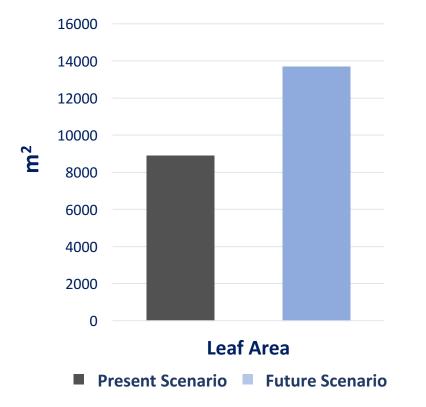
2) WATER QUALITY

<u>i-Tree Eco</u>

INPUT Data

		Fundamental	Strongly Recommended	Optional
Complete Inventory		Species, DBH	Ground Use, Total Height, Crown Dimensions, Crown Health, Crown Exposure	Private/Public tree, GPS coordinates, Building interaction, etc.
Plot-Based Sample	Plot Data	Measured Percentage, Canopy Covered Percentage Species, DBH	Ground Cover	Shrub Percentage, Plantable Space, etc.
Inventory	Vegetation Data		Ground Use, Total Height, Crown Dimensions, Crown Health, Crown Exposure	Private/Public tree, Distance to plot center, etc.

Common INPUT data: Maintenance Cost [€], Electricity Cost [€(kWh], Carbon Cost[€/ton], Heating Cost [€/therm], Avoided Runoff Cost [€/m³]



<u>i-Tree Eco</u>

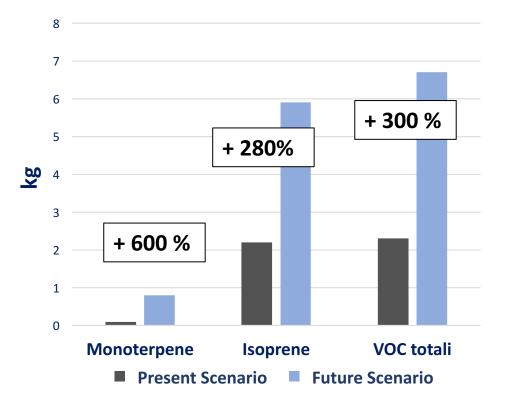
OUTPUT

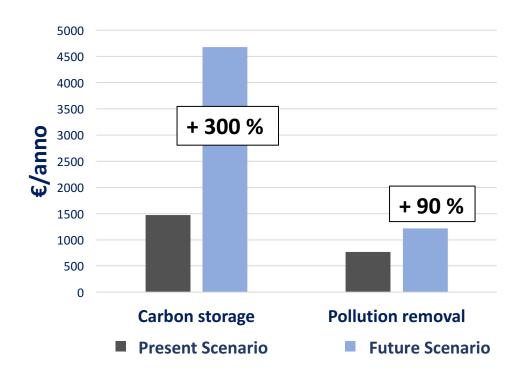
Leaf Area (UFORE-A: Urban Forest Anatomy)

OUTPUT from Leaf Area

	Evaporation	Transpiration	Interception
	(m ³ /year)	(m ³ /year)	(m ³ /year)
Present Scenario	65,60	119,30	65,60
Future Scenario	103,53	209,69	103,53
% Increase	57,82 %	75,77 %	57,82 %

	O ₂ Production	
	(m³/year)	
Present Scenario	65,60	
Future Scenario	103,53	




<u>i-Tree Eco</u>

Dati OUTPUT

VOC (UFORE-B: Biogenic Emissions)

Carbon Storage (UFORE-C) Pollution Removal (UFORE-D)

- *i-Tree* Hydro: a "Database" creation to share information for future applications
- *i-Tree Eco*: making the "Database" section on shrub species available also for Complete Inventory;
- *i-Tree Eco*: implementing the Forecast function with the possibility of adding species in the planting project.

Possible Project Developments

- *i-Tree* Hydro: using the Leaf Area data from Eco to improve Hydro outputs;
- *i-Tree Eco*: applying the Forecast function to Present Scenario comparing it with Future Scenario outputs;
- <u>i-Tree Eco</u>: applying a Plot-Based Sample Inventory for Future Scenario and comparing it with Complete Inventory data;
- *i-Tree Eco*: adding annual maintenance costs provided by municipal plan to obtain a costs/benefits comparison.

Francesco Busca

Thanks for your attention

