

Determining the limits for harmonic constituent <u>Amplitude and Phase</u> <u>ES</u>timation (APES) from time series measurements using least-squares

Daniel Schweizer, Vincent Ried, Gabriel Rau, Jonthan Tuck and Peter Stoica

INSTITUT FÜR ANGEWANDTE GEOWISSENSCHAFTEN, ABTEILUNG INGENIEURGEOLOGIE

What is <u>Tidal Subsurface</u> <u>Analysis</u> (TSA)?

- Earth and atmospheric tides cause subsurface compression and expansion at well-known cycles (i.e. tides)
- By knowing these drivers (tides), the groundwater response can be inverted to quantify in-situ subsurface hydrogeomechanical properties
 - Hydraulic conductivity
 - Specific storage
 - Porosity
 - Bulk modulus

McMillan et al. (2019) Reviews of Geophysics

Role of Tidal Constituents

- Tidal constituents occur at known frequencies grouped around 1 or 2 cylces per day (cpd)
 - Most impactful: S2 and M2
- To quantify subsurface hydrogeomechanical properties, the amplitude and phase of the constituents need to be estimated from noisy measurements:

responds

2001

2002

Time [date]

2003

Table 1 Table of Major Tidal Components Ordered According to Frequency in Cycles per Day (cpd) Darwinian Tidal Tidal gravity Tidal Frequency potential variation dilation name (m^2/s^2) (m/s^2) (cpd) (-)Description Attribution Diurnal 8.26E-06 O_1 0.929536 5.363385 3.347E-08 Principal lunar diurnal Earth M_1 0.966446 10.286769 1.58E-05 6.419E-08 Lunar diurnal Earth P_1 0.997262 7.407625 1.14E-05 4.622E-08 Diurnal lunar perigee Earth Principal solar atmospheric pressure (thermal) 1.000000 Atmosphere 1.002738 22.924982 3.53E-05 1.431E-07 Lunar solar diurnal Earth Semidiurnal 1.895982 12.963403 1.996E-05 8 089E-08 unar elliptic semidiurnal (variation in Moon distance) Earth M_2 1.932274 42.060943 6.477E-05 2.625E-07 Principal lunar semidiurnal Earth 2.000000 19.309855 2.973E-05 1.205E-07 Atmosphere/Earth Principal solar semidiurnal K_{2} 2.005476 11.791770 1.816E-05 7.358E-08 Lunar Solar Semidiurnal arth Barometric Power Atmospheric 0.2 pressure record Pressure Head [m] 2.5 Power 0.2 Groundwater 0.1

0.0

0.5

BUT: How accurate and reliable are estimates, and what signal analysis methods work best?

Institut für Angewandte Geowissenschaften

Frequency [cpd]

2.5

2.0

Signal analysis methods

Discrete Fourier Transform (DFT)

converts a finite sequence of uniformly-spaced samples in the time domain (e.g. groundwater head record) into a same-length sequence of uniformly-spaced samples in the frequency domain.

BUT:

- Frequency resolution depends on record length
 - M2 and S2 at nearby frequencies not reliably separated
- Records often contain gaps and irregularly spaced sampling
 - Data treatment required (interpolation or resampling)

Signal analysis methods

Generalized least squares amplitude and phase estimation (APES)

 Uses non-linear least squares to fit a harmonic function to the discrete time series measurement

 Handles missing values and data gaps (no interpolation), non-uniform sampling (no resampling)

- 1. How well does APES perform in estimating amplitude and phase when compared to DFT?
- 2. What are the practical data requirement for APES (sampling frequency, record duration, signal-to-noise ratio, signal quantisation and data gaps) for which an accurate extraction of harmonic constituents is guaranteed?

QUESTIONS

Workflow: generate synthetic data sets

Two general types of data set configurations:

- uniformly sampled data with no missing values
- non-uniformly sampled data with missing values, varying sampling rates and sampling time offsets.

Total of \sim 300,000 datasets with varying signal and sampling parameter combinations

APES vs DFT: for uniformly sampled data

Overall

 APES generally performs better in estimating both Phase and Amplitude, but has larger spread

M2 and S2

 APES superior in distinguishing amplitude and phase of close by frequencies
-> better S2 estimate

APES vs DFT: for uniformly sampled data

Sampling parameters:

- APES more robust than DFT across full range of sampling parameters
- S2 generally more difficult to estimate! -> interferance with other constituents?
- Minimum general criteria:
 - Sharp decrease in S2 relative error at around 1000 sampling points and >= 6 samples per day
 - Similar tendency for a record duration of ~ 70 days.

APES: for non-uniformly sampled data

Non-uniformities:

Percentage of gaps has no overall effect on performance of the APES

General trends:

- An increase in number of samples has a strong overall effect on the error.
- Quantisation becomes important where its value is similar to the power of the signal.

Tanks for your attention!!!