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Earth observation
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Earth observation meets machine learning



Machine learning

● X: observations, independent covariates
● Y: target, dependent variable
● F: machine learning model (nonlinear, nonparametric, flexible, learned from data)

F(X) = y
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Challenges in ML
● Consistency issue ML models do not respect Physics
● Learning issue ML are excellent approximators, yet no fundamental laws are learned
● Interpretability issue Big data is good to estimate correlations, what about causation?
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Gaussian Processes in a nutshell

“A Survey on Gaussian Processes for Earth Observation Data Analysis: A Comprehensive Investigation”
Camps-Valls, G. and Verrelst, J. and Muñoz-Marí, et al. IEEE Geoscience and Remote Sensing Magazine 2016
“ A Perspective on Gaussian Processes for Earth Observation”
Gustau Camps-Valls, Dino Sejdinovic, Jakob Runge, Markus Reichstein, National Science Review 6 (4) :616-618, 2019

https://ieeexplore.ieee.org/document/7487896
https://academic.oup.com/nsr/article/6/4/616/5369430
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Gaussian Processes in a nutshell
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Standard GP models for parameter retrieval
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Standard GP models for parameter retrieval

● Vegetation parameters from remote sensing data: chlorophyll content, LAI, vegetation cover

“A Survey on Gaussian Processes for Earth Observation Data Analysis: A Comprehensive Investigation”
Camps-Valls, G. and Verrelst, J. and Muñoz-Marí, et al. IEEE Geoscience and Remote Sensing Magazine 2016

https://ieeexplore.ieee.org/document/7487896
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The truth is that...

At AGU 2017, New Orleans, USA
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Hybrid modeling, where knowledge lies ...

Data
driven

Knowledge
driven
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1: GP for multisource fusion

● Fuse optical and radar information for gap filling, for multiple output predictions
● Several parameters estimated simultaneously improve consistency

“Fusing Optical and SAR time series for LAI gap filling with multioutput Gaussian processes”
Luca Pipia and Jordi Muñoz-Marí and Eatidal Amin and Santiago Belda and Gustau Camps-Valls and Jochem Verrelst
Remote Sensing of Environment 235 :111452, 2019 

https://www.sciencedirect.com/science/article/pii/S0034425719304717
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2: Distribution regression GP models

● When X is a distribution associated with a scalar y
● Distribution regression embeds distributions in Hilbert spaces and runs regression therein
● Many examples: bunch of pixels in a region and associated target variable

“Nonlinear Distribution Regression for Remote Sensing Applications”
Adsuara, Perez,Muñoz, Mateo, Piles, Camps-Valls, IEEE TGARS 2019

https://ieeexplore.ieee.org/document/8809360
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3: Deep Gaussian Processes

● GP also goes deep; improved versatility and expressive power
● Excellent performance in emulation and atmospheric parametrization 

“Deep Gaussian Processes for Retrieval of bio-geo-physical parameters”, 
Svendsen, Molina, Ruescas and Camps-Valls,  ISPRS, 2020
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4: Physics-aware GPs with constrained optimization

● GP minimizes errors & predictions are indep. of ancillary data

“Fair Kernel Learning” Perez, Laparra, Gomez, Camps-Valls, G. ECML, 2017.
“Consistent Regression of Biophysical Parameters with Kernel Methods” Díaz, Peréz-Suay, Laparra, Camps-Valls, IGARSS 2018
“Physics-aware Gaussian processes in remote sensing” Camps-Valls, G, Svendsen, D, Martino, L. et al, Applied Soft Computing 68 :69-82, 2018 

https://arxiv.org/abs/1710.05578
https://ieeexplore.ieee.org/document/8518504
https://www.sciencedirect.com/science/article/pii/S1568494618301431


17

4: Constrained optimization

● GP minimizes errors & predictions are indep. of anthropogenic factors

“Fair Kernel Learning” Perez, Laparra, Gomez, Camps-Valls, G. ECML, 2017.
“Consistent Regression of Biophysical Parameters with Kernel Methods” Díaz, Peréz-Suay, Laparra, Camps-Valls, IGARSS 2018
“Physics-aware Gaussian processes in remote sensing” Camps-Valls, G, Svendsen, D, Martino, L. et al, Applied Soft Computing 68 :69-82, 2018 

https://arxiv.org/abs/1710.05578
https://ieeexplore.ieee.org/document/8518504
https://www.sciencedirect.com/science/article/pii/S1568494618301431
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5: Joint GP models for forward-inverse modeling
● Let ML talk to physical models

“Joint Gaussian Processes for Biophysical Parameter Retrieval”
Svendsen, Martino, Camps-Valls, IEEE TGARS 2018
“Physics-aware Gaussian processes in remote sensing”
Camps-Valls, G. et al. Applied Soft Computing, 2018.

https://ieeexplore.ieee.org/document/8110836
https://www.sciencedirect.com/science/article/pii/S1568494618301431
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6: Multioutput GP regression encoding ODEs

● Transfer learning across time, sensors and space: “LFs and noise are GPs + lin.op = a GP!”

“Gap filling of biophysical parameters with multi-output GPs”
Mateo, Camps-Valls et al, IEEE IGARSS. 2018.
“Learning latent forces from Earth time series”
Svendsen, Muñoz, Piles, Camps-Valls,, subm. 2020

https://ieeexplore.ieee.org/document/8519254
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7: GP emulation of complex codes
● GP Emulation = Uncertainty quantification/propagation + Sensitivity analysis + Speed

“Emulation of Leaf, Canopy and Atmosphere Radiative Transfer Models for Fast Global Sensitivity Analysis”, 
Verrelst, Camps-Valls et al  Remote Sensing of Environment, 2016
“Emulation as an accurate alternative to interpolation in sampling radiative transfer codes”,
Vicent and Camps-Valls, IEEE Journal Sel. Topics Rem. Sens, Apps. 2018

https://www.mdpi.com/2072-4292/8/8/673
https://ieeexplore.ieee.org/document/8510901
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8: GP for uncertainty propagation

● Uncertainty propagation comes with closed-form solutions!

“Accounting for Input Noise in Gaussian Process Parameter Retrieval”
Johnson, J. E. and Laparra, V. and Camps-Valls, G. IEEE GRSL  17 (3) :391-395, 2020 

https://ieeexplore.ieee.org/document/8746634
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1: GPP estimation from FLUXNET

9: GP interpretability

● The derivatives of the GP model are analytical!
● Sensitivity analysis for free!

“Ranking drivers of global carbon and energy fluxes over land”
Camps-Valls, G. Jung, M. Ichii, K. Papale, D. Tramontana, G. Bodesheim, P. Schwalm, C. 
Zscheischler, J. Mahecha, M. Reichstein, M.  IEEE IGARSS 2015

https://ieeexplore.ieee.org/document/7326806
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2: ocean chlorophyll estimation

9: GP interpretability

● The derivatives of the GP model are analytical!
● Sensitivity analysis for free!

“Gaussian Process Sensitivity Analysis for Oceanic Chlorophyll Estimation”
Blix, K. and Jenssen, R. and Camps-Valls, Gustau, IEEE JSTARS, 2017 

https://ieeexplore.ieee.org/document/7805174
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10: GP Granger Causality
● Causal inference goes beyond correlation analysis
● Granger causality tests whether the past of X is useful to predict the future of Y
● We introduce a GP-based Granger causality to account for nonlinear GC relations

“Revisiting impact of MJO on soil moisture:a causality perspective”, AGU 2019
“Cross-Information Kernel Causality: Revisiting global teleconnections of ENSO over soil moisture and vegetation" (2018). Climate Informatics: CI 2019
“Explicit Granger causality in Hilbert spaces” Bueso, Piles and Camps-Valls, submitted, 2020

https://www.researchgate.net/profile/Diego_Bueso/publication/339233176_Revisiting_impact_of_MJO_on_soil_moisture_a_causality_perspective/links/5e453d6392851c7f7f3450af/Revisiting-impact-of-MJO-on-soil-moisture-a-causality-perspective.pdf
https://www.researchgate.net/publication/339231293_CROSS-INFORMATION_KERNEL_CAUSALITY_TEST_CROSS-INFORMATION_KERNEL_CAUSALITY_REVISITING_GLOBAL_TELECONNECTIONS_OF_ENSO_OVER_SOIL_MOISTURE_AND_VEGETATION
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10: GP Granger Causality
● Causality is sharper than mere correlation! Some impacts confirmed, others not!
● ENSO4 “causes” SM in very dry (Sahel) and very wet (tropical rain forests)

“Dominant Features of Global Surface Soil Moisture Variability Observed by the SMOS Satellite” M. Piles et al. Remote Sensing, 2019

https://www.mdpi.com/2072-4292/11/1/95
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Conclusions
● Machine learning in EO and climate

○ Many techniques ready to use
○ Huge community, exciting tools

● Solid mathematical framework to deal with
○ Multivariate data
○ Multisource data
○ Structured spatio-temporal relations
○ Nonlinear feature relations

● Risks & remedies
○ Understanding is more complex
○ Physics consistency a must
○ Physics-driven ML & Explainable AI
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