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Intro
Source separation is a known problem in the 
Machine Learning domain; there are successful 
applications to music, hearing aids, and speech 
enhancements. Deezer - open-source ML for instrument separation

Enhanced smart hearing aid using deep neural 
networks (Nossier et al. 2019)

La Furca  End-to-End Monaural Speech 
Separation ( Shi et al., 2020)

https://sigsep.github.io/
https://doi.org/10.1016/j.aej.2019.05.006
https://arxiv.org/pdf/2001.08998.pdf


Source separation

Several signals can be added together to obtain a 
mixture, but a mixture can also be separated back 
into individual signals



Autoencoders
Autoencoders are a type of machine learning neural network consisting of 3 major components: an 
encoder, which ensures efficient compression of the data, a bottleneck that performs re-representation 
of the compressed data, and a decoder - that decompress the data into the desired output.
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DPRNN TasNet - Dual Path Recurrent Neural Network

Architecture of Dual Path Recurrent Neural Network TasNet (Luo et al. 2020). Conv1D and Conv2D - 1D and 2D convolution 
operations, correspondingly; PReLU, ReLU, Tanh and Sigmoid - activation functions; Linear - Fully-Connected layer; 
GroupNorm - Group Normalization, Row and Column BiLSTM - row-wise and column-wise bidirectional 
Long-Short-Term-Memory Cells; Separation, Merging, Overlay and Add - array manipulations. Arrows indicate an order of 
operations applied to the input. + is element-wise summation; x is element-wise multiplication.

https://arxiv.org/pdf/1910.06379.pdf
https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d
https://pytorch.org/docs/stable/nn.html#torch.nn.Conv2d
https://pytorch.org/docs/stable/nn.html#torch.nn.PReLU
https://pytorch.org/docs/stable/nn.html#torch.nn.ReLU
https://pytorch.org/docs/stable/nn.html#torch.nn.Tanh
https://pytorch.org/docs/stable/nn.html#torch.nn.Sigmoid
https://pytorch.org/docs/stable/nn.html#torch.nn.Linear
https://pytorch.org/docs/stable/nn.html#torch.nn.GroupNorm
https://pytorch.org/docs/stable/nn.html#torch.nn.LSTM


Data
Data recorded with the Raspberry Shake seismic 
sensor at the University of Vienna, located ~20 
meters from railway tracks (S40, U4, Spittelau 
station), at sampling frequency 100 Hz. 

10x24 hour-long waveforms were recorded. These 
waveforms (which essentially are the records of 
passing trains) were split into consecutive windows 
of 2000 samples each with a 50% overlap. No 
bandpass filter was applied. Samples containing just 
the noise were rejected

Windows were randomly shuffled and combined into 
pairs. Separate channels in each pair were summed 
to obtain a waveform mixture. 
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Corridor Railway tracks
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Raspberry 
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Data example: Source 1, 
Source 2, Mixture

https://raspberryshake.org/
https://raspberryshake.org/


Training
PyTorch was used as a framework for model building (Shi et al. 
2020) and training. The model was trained on GPU provided by 
Google Colaboratory.

The training objective was to minimize Scale-Invariant Source 
to Distortion Ratio (SI-SDR) between original individual 
sources and predicted by the model waveforms since this 
metric is widely used as a source separation performance 
indicator.  Waveform mixtures were L2-normalized before 
summation, for each epoch, 10000 sample combinations were 
drawn uniformly from the database consisting of 5644 unique 
data windows.

The initial learning rate of 1e-3 was decaying by a factor of 
0.98 every 2 epochs. After 100 epochs average SI-SDR of ~ 
-4.5 dB was achieved
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Training pipeline.

https://pytorch.org/
https://github.com/ShiZiqiang/dual-path-RNNs-DPRNNs-based-speech-separation
https://github.com/ShiZiqiang/dual-path-RNNs-DPRNNs-based-speech-separation
https://colab.research.google.com/


Data augmentation
To achieve better generalization, the 
following augmentations were applied to 
each signal composing the mixture:

Input signal

● Random polarity change

● Apply random roll (shift in samples)

● Apply either low-pass or high-pass 
with random frequency below Nyquist 

frequency, or keep signal intact
Augmented signal

https://numpy.org/doc/stable/reference/generated/numpy.roll.html?highlight=roll#numpy.roll
https://pytorch.org/audio/functional.html#torchaudio.functional.lowpass_biquad
https://pytorch.org/audio/functional.html#torchaudio.functional.highpass_biquad


Separation process
A mixture of two signals described in the Data 
section is fed into TraML Neural Network. This 
network separates the mixture into 2 individual 
signals: Source 1 and Source 2 (they are 
generated by the network). 

Mixture of 
two signals

TraM
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Source 1 Source 2

Those separated signals (predicted 
by the Neural Network) are then 
compared against their original 
counterparts. A correlation 
coefficient is demonstrated in the 
figure caption. Please note, that 
since TraML operates on Scale 
Invariant SDR, the amplitude output 
of the network is not to scale, and 
therefore has to be L2-normalized 
for a fair comparison.



Results (Not overlapping sources)

Source 1

Source 1 (zoomed)

Source 2

Source 2 (zoomed)

Mixture of two signals (Source 1+Source 2)



Results (Slightly overlapping sources)

Source 1

Source 1 (zoomed)

Source 2

Source 2 (zoomed)

Mixture of two signals (Source 1+Source 2)



Results (Strongly overlapping sources)

Source 1

Source 1 (zoomed)

Source 2

Source 2 (zoomed)

Mixture of two signals (Source 1+Source 2)



U4 - U6 U-Bahn separation example

U4 U6

U6 (zoomed)

Mixture of two U-Bahn signals (U4+U6)

U4 (zoomed)



Fine-tuning to other applications
In practice, deep neural networks like the one, presented here,  have a very big number of 
parameters (2.633.729 in TraML). Training Neural Networks on an insufficiently small dataset 
greatly affects the ability to generalize, often result in overfitting.

More often in practice, models get fine-tuned in existing pre-trained networks by continued 
training on the smaller dataset at hand. Provided that the nature of the dataset does not 
significantly differ from the original dataset, the pre-trained model will already have learned 
features that are relevant to the problem at hand (e.g. reading and generating waveforms).

In the particular case of TraML, which was originally trained for source separation, one can 
fine-tune it to denoise the data.



Noise-suppression

Denoised

Denoised (zoomed)

Added noise

Noise (zoomed)

Mixture of a signal with added noise



U4 denoising example
U6 U-Bahn recorded

Extracted noise

U6 signal with suppressed noise

* Correlation values are shown with the 
respect to the input U6 record

*

*



Conclusions
The task of source separation that was previously considered practically not 
solvable (conventional methods are giving very poor results), can now be solved 
with advanced methods such as Machine Learning. Such methods can perform 
not only source separation but also noise suppression.

The generative architecture of autoencoders has proven itself under various 
applications; it is now entering the seismology domain; it can help to better 
understand subsurface processes by obtaining cleaner data.

As we optimize our models with more data and compute we aim to achieve even 
better results in the observable future.


