

OPERATIONAL NEAR-REAL TIME DROUGHT MONITORING USING

GLOBAL SATELLITE PRECIPITATION ESTIMATE

Olivier Prat¹, Alec Courtright², Ronald Leeper¹, Brian Nelson³, Rocky Bilotta², James Adams⁴, and Steve Ansari⁵

¹Cooperative Institute for Satellite Earth System Studies (CISESS), North Carolina State University, Asheville, NC, USA (<u>opprat@ncsu.edu</u>)

²ISciences, National Centers for Environmental Information (NCEI), Asheville, NC, USA

³NOAA/NCEI/Center for Weather and Climate (CWC), Asheville, NC, USA

⁴Formerly of ERT/NCEI, Asheville, NC

⁵NOAA/NCEI/National Integrated Drought Information System (NIDIS), Asheville, NC, USA

EGU General Assembly 2020

HS4.2/NH9.14-14871 | Thursday, May 7, 2020 | 14:00-15:45

cicsnc.ora

ncsu.edu ncei.noaa.gov **NC STATE UNIVERSITY**

Objectives

- 1. Evaluate the feasibility of using satellite precipitation Climate Data Records (CDRs) to detect and monitor drought on a global scale.
- 2. Implement the monthly and daily (running mean) SPI indices.
- 3. Evaluate SPI indices against in-situ indices and drought monitor over the continental US (and globally if possible).
- 4. Provide near-real time global monitoring capabilities using satellite precipitation data.
- 5. Develop an interactive global drought information dashboard to communicate drought information in near-real time.

Satellite CDR Precipitation Datasets

CMORPH-CDR (CPC P. Xie)

- □ Available 1998-Present (Daily) 0.25 x 0.25 degree (60N-60S, 0-360)
- Interim version of CMORPH-CDR is available routinely with 1-day lagtime (i.e. CMORPH-ICDR)
- The Bias-Adjusted version is available with 2-month lag-time

⇒ Use CMORPH-CDR + CMORPH-ICDR to detect and monitor droughts on a global scale in near-real time.

PERSIANN-CDR (UC-Irvine S. Sorooshian)

- Available 1983-Present (Daily) 0.25 x 0.25 degree (60N-60S, 0-360)
- The Bias-Adjusted version is available with 4-month lag-time
- Almost 40-year of Bias-Adjusted global daily precipitation data

⇒ Use PERSIANN-CDR to increase the period of record (1983-) and quantify the SPI sensitivity to input rainfall data.

Monthly SPI : CMORPH vs. PERSIANN

3-month SPI : January 2003

Standardized Precipitation Index (Pearson distribution), 3-month

Standardized Precipitation Index (Pearson distribution), 3-month

9-month SPI : July 2011

Standardized Precipitation Index (Pearson distribution), 9-month

 $K_{n} = 1 \text{ Mark} = 1 \text{ Mar$

Standardized Precipitation Index (Pearson distribution), 9-month

PERSIANN

Monthly SPI : CMORPH vs. PERSIANN

San Antonio (TX)

2010-2012 Texas-Mexican Drought

CMORPH SPI : Daily vs. Monthly

February 2011

Standardized Precipitation Index (Pearson distribution), 9-month

 $K_{1} = 1 \text{ Mar} = 1 \text{ Mar} = 1$

Standardized Precipitation Index (Pearson distribution), 270-day

March 1 2011

Standardized Precipitation Index (Pearson distribution), 9-month

August 2011

Standardized Precipitation Index (Pearson distribution), 270-day

September 1 2011

270-day

CMORPH SPI : Daily vs. Monthly

McCook (NE)

2012-2013 Midwestern Drought

CONUS : 9-month SPI – CMORPH vs. PERSIANN

Midwestern

NORTH CAROLINA : 9-month SPI – Satellite vs. USDM

Drought Frequency Satellite vs. USDM

D4 > 0% of Area

D4-D0 > 10% of Area

D4-D0 > 0% of Area

(%)

100

75

50

25

Occurence

(%)

100

75

CMORPH-SPI

USDM

SPP SPI vs. GPCC_DI : April 2011

CMORPH SPI – 9-Month

CMORPH SPI – 9-Month

SPP* : Satellite Precipitation Products

GPCC_DI available monthly since 2013.

- One month lag-time (now 01/02/2020).
- Average of SPI and SPEI.

- GPCC 'First Guess Product' used for precipitation.
- CPC Monthly Global Surface AirTemperature Data used for PET.

*April 1st

*May 1st

Conclusions

- 1. Monthly and daily SPI were implemented on a global scale using precipitation satellite data from CMORPH-CDR (since 1998) and PERSIANN-CDR (since 1983).
- 2. Both CMORPH-CDR and PERSIANN-CDR presented the same global patterns. Differences are observed locally in term SPI values and drought classification.
- 3. Both Monthly and Daily SPIs present the same timing and area for the major droughts episodes over CONUS and the globe.
- 4. Further validation is needed as results may differ in term of magnitude and severity when compared to SPI or other drought indices derived from in-situ data.

NIDIS (National Integrated Drought Information System) is developing an interactive global drought information dashboard to provide timely drought monitoring resources to mitigate drought information and assess disparities between global and regional scales.

Global current conditions according to station data

NIDIS (National Integrated Drought Information System) is developing an interactive global drought information dashboard to provide timely drought monitoring resources to mitigate drought information and assess disparities between global and regional scales.

External, region specific drought resources

NIDIS (National Integrated Drought Information System) is developing an interactive global drought information dashboard to provide timely drought monitoring resources to mitigate drought information and assess disparities between global and regional scales.

Near-real time Satellite derived SPI

NIDIS (National Integrated Drought Information System) is developing an interactive global drought information dashboard to provide timely drought monitoring resources to mitigate drought information and assess disparities between global and regional scales.

Global Drought Information

System

NA drought conditions map and percent area drought coverage time-series graph

Near-real Time Drought Monitoring Using CMORPH-CDR and ICDR :

1. Operational Products:

- Monthly and daily SPI values are routinely calculated globally.
- A Near-real time, global, daily SPI is available within 1-day to the current day (i.e. when ICDR is available).
- 2. Data Product services:
 - Operational SPI products will be provided to the public through an Interactive Global Drought Information Dashboard.
 - A beta version of the near-real time SPI products will be available through a NOAA/NCEI website. It will complement in-situ derived drought indices (SPI, SPEI, PDSI). Release will coincide with the new Drought.gov website in May/June.

Contact : <u>opprat@ncsu.edu</u>

Additional Slides Discussion

Monthly SPI : Bias-Adjusted vs. Real-Time

3-month SPI : January 2003

Standard Precipitation Index (Pearson Type III distribution), 3-month scale

9-month SPI : July 2011

Standard Precipitation Index (Pearson Type III distribution), 9-month scale

⇒ Differences between SPIs computed with CMORPH-CDR and CMORPH-ICDR over the period 1998-2017.