#### **Can Teleseismic Travel-Times Constrain 3D Anisotropic Structure in Subduction Zones? Insights from Realistic Synthetic Experiments**



**European Research Council** 

Established by the European Commission

Project funded by ERC-STG grant #758199



European Geophysical Union General Assembly 7 May 2020

Brandon P. VanderBeek & Manuele Faccenda

Università di Padova





EGU2020-14886 https://doi.org/10.5194/egusphere-egu2020-14886

### Summary

- Unmodeled anisotropic structure can generate significant artefacts in teleseismic body wave images (e.g. Bezada et al., 2016)
- We evaluate the ability of teleseismic P-wave travel-time tomography to recover realistic isotropic and anisotropic subduction zone structure

#### Summary of main results:

- Teleseismic P-waves can constrain lateral and depth variations in the azimuth and dip of mantle anisotropy
- While anisotropic structure can be recovered, isotropic artefacts remain particularly if only azimuthal anisotropy is considered
- SKS splitting intensity can be incorporated into P-wave inversions to better constrain azimuthal anisotropy patterns



## **Methods: Synthetic Data**

- Create anisotropic elastic model from geodynamic simulation of subduction (Faccenda, 2014)
- Model teleseismic wavefield through model using SPECFEM + AxiSEM
  - 15 s double couple source
- 770 receivers spaced 75 km apart record the wavefield generated from 16 sources evenly distributed in backazimuth and range
  - P arrivals picked via cross-correlation (VandeCar and Crosson, 1990)
- Synthetic data is independent of inversion algorithm



CC I

# **Methods: Tomography**

• Use common sinusoidal approximation for hexagonal anisotropy:

 $v = v_i [1 + f(2[\cos(\theta)\cos(\gamma)\cos(\phi - \psi) + \sin(\theta)\sin(\gamma)]^2 - 1)]$ 

• Simplified parameterization for SKS splitting intensity assuming azimuthal anisotropy and near vertical ray paths:

 $si = 2rLu_i[A\sin(2\lambda) + B\cos(2\lambda)]$ 

- The A and B terms control anisotropy orientation and P-wave anisotropic magnitude; fixed ratio of P-to-S anisotropic fraction (r) is assumed
- Inversion includes approximate anisotropic finite-frequency kernels
- This presentation focuses on inversion results; method details will be presented in manuscript currently in preparation for *Geophys. J. Int*.

| $v_i = mean \ velocity$            |
|------------------------------------|
| f = anisotropic fraction           |
| $\psi =$ symmetry axis azimuth     |
| $\gamma = symmetry axis elevation$ |
| $\phi = ray azimuth$               |
| $\theta = ray \ elevation$         |
| $\lambda = polarization$ azimuth   |
| L = ray segment length             |
| $u_i = 1/v_i$                      |



## **True Model**





CC I

#### **Isotropic Inversion of Isotropic Data**



- In this case, inverting teleseismic data created with isotropic model
- Illustrates recovery of isotropic heterogeneity in absence of complications due to anisotropy
- Relative nature of teleseismic data requires that the fast slab be balanced by low velocity perturbations
- Low-velocity artefacts are small in amplitude and evenly distributed

#### **Isotropic Inversion of Anisotropic Data**



- Significant distortion of slab geometry
- Significant increase in magnitude of low velocity artefacts
- Low velocity zones have stronger amplitude beneath the slab

#### **Azimuthal Anisotropy Inversion**





#### **3D Anisotropic Inversion**





#### **Data Fit**



- Including anisotropy in inversion improves data fit
  - Expected since more model complexity is introduced
- For a given perturbational vector length, anisotropic solutions consistently yield better fit



#### **P + SKS Joint Inversion for Azimuthal Anisotropy**



- Inclusion of SKS splitting intensity measurements significantly improves recovery of azimuthal anisotropic structure
- Inversion uses additional 8 SKS events evenly distributed in back-azimuth at 120° distance
- P Isotropic anomalies remain effectively identical to those previously shown (slide 8)



## Conclusions

- Teleseismic P-waves can constrain 3D anisotropic structure but untangling anisotropic from isotropic structure remains a challenge
  - Low-velocity artefacts are persistent features
  - Reflect trade-off between symmetry axis dip and mean velocity
- SKS splitting intensity can be incorporated into P-wave azimuthal anisotropic inversions in a simple but effective manner
- Removing isotropic artefacts will require better starting models derived from prior geophysical or geodynamic constraints
- Caution should be exercised when inferring physical properties (e.g. temperature, melt) from subduction zone velocity anomalies derived from teleseismic delay times

