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ABSTRACT RESULTS
In shallow aquifers, including weathered zones characteristic of crystalline We show that the the TTD is fondamentally related to the repartition of the

geologic basements, subsurface flows strongly depend on the geomorphological aquifer volume and the extend seepage area. The mean transit time distribution MODELS WITOUT SEEPAGE MODELS WITH SEEPAGE

evolution of landscapes as well as on the geological heterogeneity structures. is a function of the geology through the volume of the aquifer divided by the re-
Yet, it remains largely unknown how geomorphology and geology shape the charge rate even in the presence of seepage areas. The standard deviation of the
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flows and transit times to the river are simulated with Modflow and Modpath standard deviation to the mean (coefficient of variation) is rather determined 1.0 ' () o Cu—=01 H0
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The aquifer is assumed uniform with its constant hydraulic conductivity K —> Recharge =7 | o Seepage arca A, [ : C |
L. T and porosity @ |-]. The aquifer structure is defined by four parameters (Fig- > Runoft ) River £ v | 2 () -
ure la). First, the model length L [L] extends from its downstream to upstream |
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