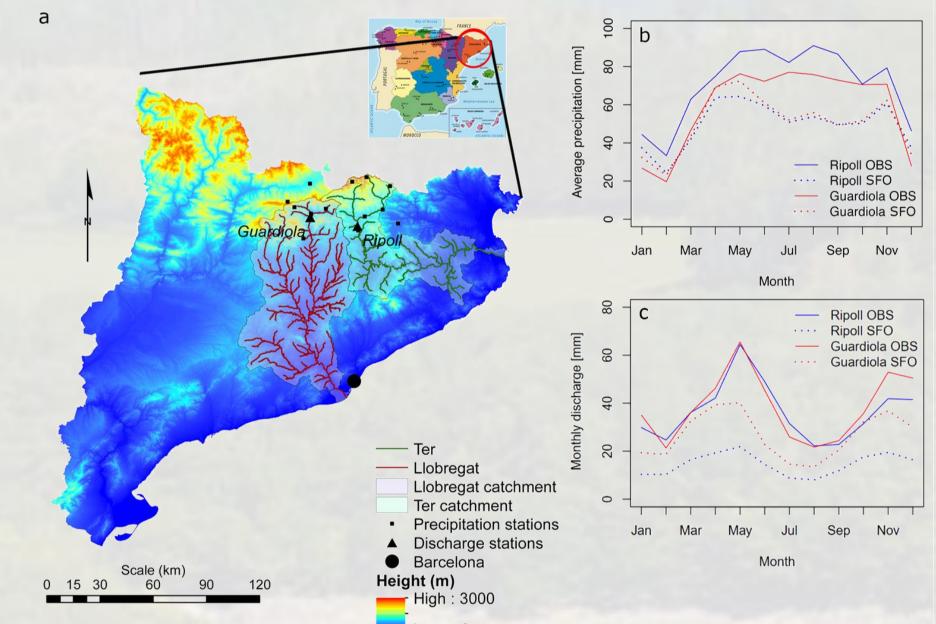


Evaluating skill and robustness of seasonal meteorological and hydrological drought forecasts at the catchment scale: Case Catalonia (Spain)

Theresa C. (Tessa) van Hateren^{1,2} (tessa.vanhateren@list.lu), Samuel J. Sutanto², Henny A. J. van Lanen² ¹ Remote Sensing and Natural Resources Modelling, Dep. of Environmental Research and Innovation, Luxembourg Institute of Science and Technology ² Hydrology & Quantitative Water Management group, Environmental Sciences Group, Wageningen University & Research

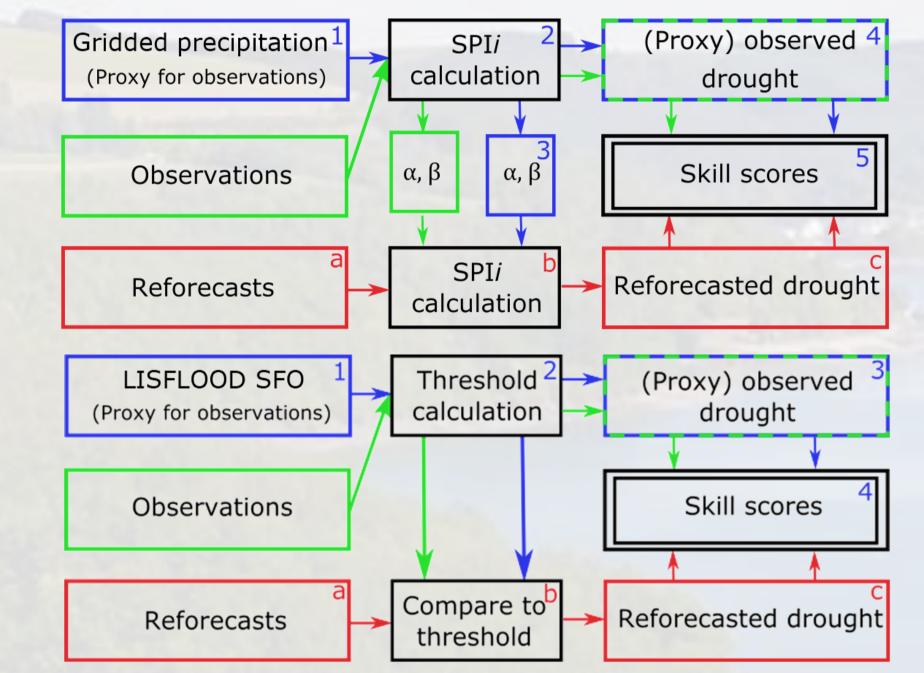

1. CONTEXT & AIM

- Drought events are costly and their effects can be widespread and long-lasting;
- Climate change will likely lead to drier conditions in many regions and river basins, leading to more frequent occurrence of drought events and an increase of their impacts;
- Accurate prediction of hydrological droughts, including water deficits, which is not directly provided by low flow forecasting, is therefore of prime importance to water managers in drought-prone regions, who can take accurate measures to alleviate drought impacts;
- Though hydro- and meteorological drought forecasts are both available, so far, they were mostly discussed separately

2. METHODS

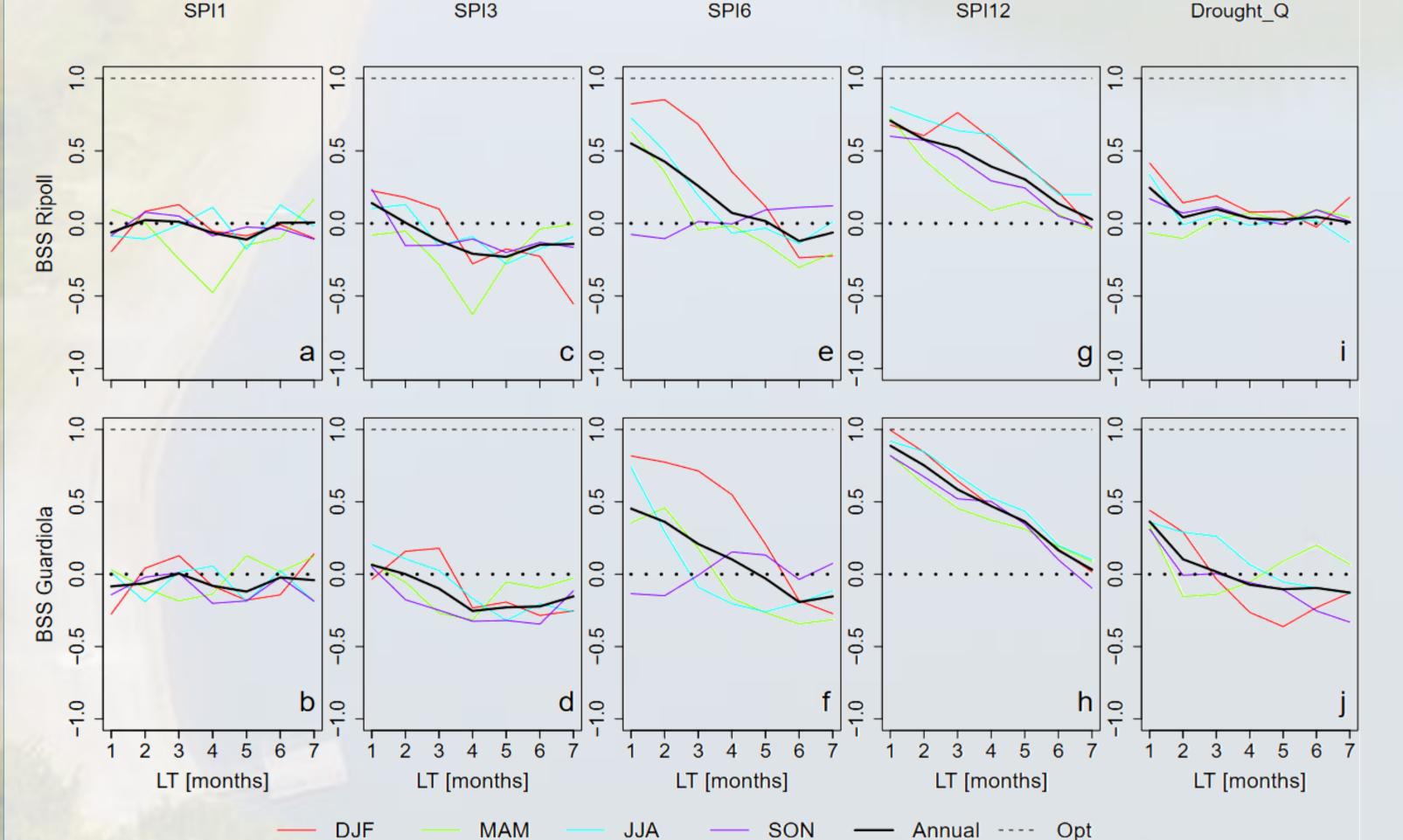
3. RESULTS

Study area: Guardiola (GU, Llobregat) & Ripoll (RI, Ter) catchments (Catalonia, ES)


SPI3

Datasets

- Gridded Simulations Forced with Observations (SFO) from the LISFLOOD model : P, Q (2002-2010)
- In situ observations : P (1996-present), Q (1916-present) •
- ECMWF-SEAS4 7 month hydro-meteorological reforecasts (2002-2010)


SFO vs. In situ observ	R ²	NSE	KGE	
	RI	0.49	-0.04	0.25
Procinitation	Mov. av. RI	0.60	-0.45	0.30
Precipitation	GU	0.49	0.14	0.52
	Mov. av. GU	0.62	0.39	0.65
	RI	0.37	-6.25	-1.61
Diceborgo	Mov. av. RI	0.58	-0.25	0.03
Discharge	GU	0.28	-0.13	0.25
	Mov. av. GU	0.57	0.41	0.44

Data processing

4. CONCLUSIONS

Seasonal (coloured) and annual (black) Brier Skill Scores (BSS) in SPI1(a,b), 3(c,d), 6(e,f) & 12(g,h) and in discharge drought (i,j) for the Ripoll (a-i) and the Guardiola (b-j) catchments.

- Higher efficiencies are found in the Guardiola catchment than in the Ripoll catchment
- Meteorological drought forecasts (SPI1,SPI3), as compared to the SFO data, do generally not outperform the climatology for these short accumulation times (shown by BSS<0).
- Winter (DJF, red) often has a higher BSS than the annual skill for almost all SPIs and LTs, whereas Spring (MAM, green) often shows lower values than the annual BSS
- Hydrological drought reforecasts outperform climatology up to 3–4 months LT (shown by BSS>0 in i,j).

- Seasonal hydro-meteorological forecasts show highest skill when performed in winter and lowest skill when performed in spring;
- Hydrological drought forecasts show skill up to 3-4 months lead time;
- Meteorological drought forecasts show a higher uncertainty than hydrological drought forecasts and outdo climatology only for long accumulation times;
- Catalonian water resources managers could benefit from hydrological drought forecasts.

ACKNOWLEDGEMENTS

This project was funded by the ANYWHERE project (H2020 Grant agreement no. 700099) and the Luxembourgish National Research Fund under the PRIDE scheme – PRIDE15/10623093/HYDRO-CSI

Sensitivity analysis of the forecast skill of meteorological drought (SPIx) and hydrological drought (Drought_Q) for the Ripoll (top) and Guardiola (bottom) catchments

		SPI=-0.5, SFO (reference)				SPI=-0.5, OBS			SPI=0, SFO				SPI=-1, SFO				Drought_Q				
	LT	SPI1	SPI3	SPI6	SP112	SPI1	SPI3	SPI6	SPI12	SP11	SPI3	SPI6	SPI12	SP11	SPI3	SPI6	SP112	Q80, SFO (reference)	Q80, OBS	Q70, SFO	Q90, SFO
RI	1 - 3	-0.01	0.01	0.41	0.60	-0.39					0.28	0.52	0.80	-0.08							
	4 - 7	-0.04	-0.18	-0.02	0.21	-0.52	-0.65	-0.63	0.16	0.11	0.06	0.23	0.50	-0.07	-0.23	-0.05	0.02	0.03	-0.99	0.06	0.01
GU	1 - 3	-0.05	-0.01	0.34	0.74	-0.10	-0.12	-0.24	0.64	0.19	0.35	0.53	0.80	-0.10	-0.02	0.26	0.56	0.16	0.10	0.05	0.22
	4 - 7	-0.07	-0.21	-0.07	0.26	-0.10	-0.26	-0.21	0.21	0.14	0.16	0.14	0.46	-0.14	-0.24	-0.17	0.02	-0.10	-0.04	-0.25	-0.02

Relatively low robustness of the model is shown by visible changes in BSS when thresholds are varied. The use of a less extreme threshold lead to decreased skill in the hydrological drought forecasts and improved skill in the meteorological drought forecasts. • The use of a more extreme threshold

leads to opposite effects: higher skill

in hydrological drought forecasts and

lower skill in meteorological drought

FURTHER READING

Van Hateren, T. C., Sutanto, S. J. & Van Lanen, H. A. J. (2019) Evaluating skill and robustness of seasonal meteorological and hydrological drought forecasts at the catchment scale - Case Catalonia (Spain). Environ. Int. 133B, 105206. doi: 10.1016/j.envint.2019.105206

Luxembourg Institute of Science and Technology

5, avenue des Hauts-Fourneaux L-4362 Esch/Alzette

phone: (+352) 275 888 - 1 (+352) 275 885 fax:

forecasts.

tessa.vanhateren@list.lu LIST.lu

