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Example Application I

Hydrology Simulations
‚ Topography (macro scale)

‚ Porous soil structure (fine scale)

‚ Scales range from mm to km
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Example Application II

Mechanics of Composite Materials

‚ Macroscopic stress is
determined through
microscopic structures

‚ Scales range from µm
to m
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Example Applications III

Meta materials

‚ Materials with negative refraction index

‚ Ring structure made of nonmagnetic metals, interlocked cells of
glass fibre circuits, vertical connecting metallic wires (metallic
structure and split-ring resonators)

‚ Scales range from nm to m

∇ ¨D “ ρ (Gauß law)

∇ ¨ B “ 0 (Gauß law for magnetism)

1

c
BtB `∇ˆ E “ 0 (induction law)

1

c
p4πj ` BtDq “ ∇ˆH (circuital law)

ε
pδq
r ε0E “ D (material law)

µ
pδq
r H “ B (material law)

2mm
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Scales

Models are derived from
reasonable assumptions
(scale dependent) and are
valid if the interaction
with other scales is not too
strong.

ñ Ideally: Use model
with limited range of
scales as basis for
simulation!  Quantum

mechanics

Molecular dynamics
   (Newton theory)

Kinetic theory
 (Boltzmann)

Continuum Mechanics
  (Navier-Stokes etc)

Turbulence
 (e.g., LES)

   Atmosphere
 (HPE, QG etc)

interacti
on

time

length

interacti
on

Models on different scales

ñ Not always possilble!
(scale interaction)
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Scales

Challenge with many Scales

In order to represent a function with smallest wave Opεq in d dimensions we
need at least

# unknowns ě Opε´dq [Shannon ’48] Ñ (memory consumption)

and

# flops ě Opε´rdq, r ě 1 Ñ (time consumption)
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Scale interaction

How do the scales talk?

upscaling

interpolation

      Scale Coupling 
 in Climate Simulations

Parametrizations
  (not resolved)

Dynamical Core
   (resolved)

coarse finetruncation
   scale

ñ One direction of information transfer is easy ...

Question: What fine-scale information is relevant on coarse scales?
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The Problem

Many interesting systems are/have State of the Arts in operational codes

‚ experimentally hardly accessible (as a whole)

‚ multiple scales with complex scale interactions

‚ transient

‚ dominated by advection (additional difficulty)

‚ large systems with algebraic/PDE constraints

‚ many parametrized subgrid processes
(consistent scale coupling is crucial)

‚ Scale coupling often done only heuristically

‚ simulate effective behavior correctly?

Example
Common sea ice
parametrization

compute ice fraction

70% ice cover

enters heat fluxes
 on coarse scale...

200 km

2
0

0
 k

m

What’s wrong with that?
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A Simple 1D Example

Well... let’s find the effective model (homogeniziation)

We have Fεpuεq “ 0 (ε represents smallest scales) so maybe we can

Find F˚ and u˚ so that uε Ñ u˚ and Fε Ñ F˚ (in some sense) in the limit
of large range of scales, scale separation with

F˚pu˚q “ 0 .

This is called effective model.
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A Simple 1D Example

Toy Example

What is the effective model of this PDE as εÑ 0?

´

ap
x

ε
quεx

¯

x
“ f , x P I “ ra, bs , 0 ă q ď a P L8pr0, 1sq

This?

mApaqu
˚
xx “ f , mApaq “

ż 1

0

apyq dy

Ñ Remember: this is sort of what is being done...
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A Simple 1D Example

What does math tell us?

1 }uε}H1 ď C and therefore uε Ñ u in H1pIq weakly

2 With aεpxq :“ apx{εq we have aε Ñ mApaq in L8pIq weak-˚

3 Define ξε :“ aε d
dxu

ε

4 Since }aε}L8 ď C and }uε}H1
0
ď C ñ }ξε}L2 ď C

5 Equation says: d
dxξ

ε “ f and so }ξε}H1 ď C ñ ξε Ñ ξ in L2pIq strongly

6 Therefore 1
aε ξ

ε Ñ mAp
1
a qξ in L2pIq weakly

7 But (1) and 1
aε ξ

ε “ d
dxu

ε so that d
dxu “ mAp

1
a qξ (uniqueness of limits)

8 On the other hand we have d
dxξ “ f

... and so:

K. Simon, Discrete Multiscale Complexes, EGU 2020 13



A Simple 1D Example

What does math tell us?

1 }uε}H1 ď C and therefore uε Ñ u in H1pIq weakly

2 With aεpxq :“ apx{εq we have aε Ñ mApaq in L8pIq weak-˚

3 Define ξε :“ aε d
dxu

ε

4 Since }aε}L8 ď C and }uε}H1
0
ď C ñ }ξε}L2 ď C

5 Equation says: d
dxξ

ε “ f and so }ξε}H1 ď C ñ ξε Ñ ξ in L2pIq strongly

6 Therefore 1
aε ξ

ε Ñ mAp
1
a qξ in L2pIq weakly

7 But (1) and 1
aε ξ

ε “ d
dxu

ε so that d
dxu “ mAp

1
a qξ (uniqueness of limits)

8 On the other hand we have d
dxξ “ f

... and so:

K. Simon, Discrete Multiscale Complexes, EGU 2020 13



A Simple 1D Example

What does math tell us?

1 }uε}H1 ď C and therefore uε Ñ u in H1pIq weakly

2 With aεpxq :“ apx{εq we have aε Ñ mApaq in L8pIq weak-˚

3 Define ξε :“ aε d
dxu

ε

4 Since }aε}L8 ď C and }uε}H1
0
ď C ñ }ξε}L2 ď C

5 Equation says: d
dxξ

ε “ f and so }ξε}H1 ď C ñ ξε Ñ ξ in L2pIq strongly

6 Therefore 1
aε ξ

ε Ñ mAp
1
a qξ in L2pIq weakly

7 But (1) and 1
aε ξ

ε “ d
dxu

ε so that d
dxu “ mAp

1
a qξ (uniqueness of limits)

8 On the other hand we have d
dxξ “ f

... and so:

K. Simon, Discrete Multiscale Complexes, EGU 2020 13



A Simple 1D Example

What does math tell us?

1 }uε}H1 ď C and therefore uε Ñ u in H1pIq weakly

2 With aεpxq :“ apx{εq we have aε Ñ mApaq in L8pIq weak-˚

3 Define ξε :“ aε d
dxu

ε

4 Since }aε}L8 ď C and }uε}H1
0
ď C ñ }ξε}L2 ď C

5 Equation says: d
dxξ

ε “ f and so }ξε}H1 ď C ñ ξε Ñ ξ in L2pIq strongly

6 Therefore 1
aε ξ

ε Ñ mAp
1
a qξ in L2pIq weakly

7 But (1) and 1
aε ξ

ε “ d
dxu

ε so that d
dxu “ mAp

1
a qξ (uniqueness of limits)

8 On the other hand we have d
dxξ “ f

... and so:

K. Simon, Discrete Multiscale Complexes, EGU 2020 13



A Simple 1D Example

What does math tell us?

1 }uε}H1 ď C and therefore uε Ñ u in H1pIq weakly

2 With aεpxq :“ apx{εq we have aε Ñ mApaq in L8pIq weak-˚

3 Define ξε :“ aε d
dxu

ε

4 Since }aε}L8 ď C and }uε}H1
0
ď C ñ }ξε}L2 ď C

5 Equation says: d
dxξ

ε “ f and so }ξε}H1 ď C ñ ξε Ñ ξ in L2pIq strongly

6 Therefore 1
aε ξ

ε Ñ mAp
1
a qξ in L2pIq weakly

7 But (1) and 1
aε ξ

ε “ d
dxu

ε so that d
dxu “ mAp

1
a qξ (uniqueness of limits)

8 On the other hand we have d
dxξ “ f

... and so:

K. Simon, Discrete Multiscale Complexes, EGU 2020 13



A Simple 1D Example

What does math tell us?

1 }uε}H1 ď C and therefore uε Ñ u in H1pIq weakly

2 With aεpxq :“ apx{εq we have aε Ñ mApaq in L8pIq weak-˚

3 Define ξε :“ aε d
dxu

ε

4 Since }aε}L8 ď C and }uε}H1
0
ď C ñ }ξε}L2 ď C

5 Equation says: d
dxξ

ε “ f and so }ξε}H1 ď C ñ ξε Ñ ξ in L2pIq strongly

6 Therefore 1
aε ξ

ε Ñ mAp
1
a qξ in L2pIq weakly

7 But (1) and 1
aε ξ

ε “ d
dxu

ε so that d
dxu “ mAp

1
a qξ (uniqueness of limits)

8 On the other hand we have d
dxξ “ f

... and so:

K. Simon, Discrete Multiscale Complexes, EGU 2020 13



A Simple 1D Example

What does math tell us?

1 }uε}H1 ď C and therefore uε Ñ u in H1pIq weakly

2 With aεpxq :“ apx{εq we have aε Ñ mApaq in L8pIq weak-˚

3 Define ξε :“ aε d
dxu

ε

4 Since }aε}L8 ď C and }uε}H1
0
ď C ñ }ξε}L2 ď C

5 Equation says: d
dxξ

ε “ f and so }ξε}H1 ď C ñ ξε Ñ ξ in L2pIq strongly

6 Therefore 1
aε ξ

ε Ñ mAp
1
a qξ in L2pIq weakly

7 But (1) and 1
aε ξ

ε “ d
dxu

ε so that d
dxu “ mAp

1
a qξ (uniqueness of limits)

8 On the other hand we have d
dxξ “ f

... and so:

K. Simon, Discrete Multiscale Complexes, EGU 2020 13



A Simple 1D Example

What does math tell us?

1 }uε}H1 ď C and therefore uε Ñ u in H1pIq weakly

2 With aεpxq :“ apx{εq we have aε Ñ mApaq in L8pIq weak-˚

3 Define ξε :“ aε d
dxu

ε

4 Since }aε}L8 ď C and }uε}H1
0
ď C ñ }ξε}L2 ď C

5 Equation says: d
dxξ

ε “ f and so }ξε}H1 ď C ñ ξε Ñ ξ in L2pIq strongly

6 Therefore 1
aε ξ

ε Ñ mAp
1
a qξ in L2pIq weakly

7 But (1) and 1
aε ξ

ε “ d
dxu

ε so that d
dxu “ mAp

1
a qξ (uniqueness of limits)

8 On the other hand we have d
dxξ “ f

... and so:

K. Simon, Discrete Multiscale Complexes, EGU 2020 13



A Simple 1D Example

What is the effective model of this PDE as εÑ 0?

´

ap
x

ε
quεx

¯

x
“ f , x P I “ ra, bs , a P L8pr0, 1sq

Proposition

The effective model is given by

1

mHpaq
u˚xx “ f , mHpaq “

ż 1

0

1

apyq
dy .

In general mApaq ě
1

mHpaq
, i.e., averaging leads to excessive diffusion!
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A simple 1D Example

Toy problem: Find solution of up0q “ up1q “ 0

´

´

ap
x

ε
quεx

¯

x
“ 1

where apxq “ 2` sinp2πxq with ε “ 2´6.

(courtesy: P.Henning, KTH, Sweden)
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A bit more intuition from FEM theory...

Galerkin orthogonality:

Ñ uh is best approximation of u in V h in energy norm

Céa:

}u´ uh}H1 ď inf
vhPV

h
}u´ vh}H1

Ñ uh is quasi-best approximation of u in V h in H1

Aubin-Nitsche: We roughly have for P1-FEM

}u´ uh}L2 „ inf
vhPV

h
}u´ vh}

2
H1 „ }u´ uh}

2
H1

Message

If the H1-approximation of u is bad then the L2-approximation is worse.
There are good L2-projections but our Galerkin method does not find them!
But we are looking for good L2-projections!
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A simple 1D Example

Homogenized models are often not available.

Without effective equation and ε ăă 1 microscale computations only in
limited domains. ñ We need coarse decompostion and localization.

At least: Numerical methods should reflect homogenization principles...
good part is understood for elliptic problems ...
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Another Example

Accuracy under resoluion constraints? (courtesy: E. Christner et al., KIT, Germany)

Subgrid data represented well if resolution is prohibitively high...

K. Simon, Discrete Multiscale Complexes, EGU 2020 29



Idea of Multiscale FEM

Idea of MsFEM [Hou & Wu, ’99]

MsFEM

Model:

´∇ ¨ pAε∇uεq “ f

Idea: To capture the asymptotic
structure of the solution modify the
basis

´∇ ¨ pAε∇ϕms
i q “ 0 in K

ϕms
i |BK “ ϕi|BK

K. Simon, Discrete Multiscale Complexes, EGU 2020 30



Idea of Multiscale FEM

A priori estimates for model problem

Theorem (Hou & Wu, ’99)

Let uε P H2pΩq solve the model problem and uε,h P Ph be the MsFEM
solution.
Then if h ă ε

›

›uε ´ uε,h
›

›

H1 ď Chp|uε|H2 ` }f}L2q .

If h ą ε and u0 P H2 XW 1,8 is the solution to the homogenized problem
then

›

›uε ´ uε,h
›

›

H1 ď Cph` εq }f}L2 ` C
´ ε

h

¯1{2
›

›u0
›

›

W 1,8 .

Note: |uε|
H2 “ Opε´1q Ñ 8 as ε Ñ 0.

Fails if lower order terms are involved.
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Multiscale Differential Complexes

Observation Checkerboard Instability

‚ Pactical problems involve systems with many unknowns
(not only scalar variables)

‚ Different parts of the system are in different spaces
(velocity u, vorticity ∇ˆ u, divergence ∇ ¨ u)

‚ Parts are related through (differential) operators

‚ Parts are in different function spaces related in an exact
sequence

‚ Still the system exhibits multiscale features

‚ Stability is crucial

‚ Violation of stability constraints causes spurious modes
(numerical derivatives small, despite approximating
oscillatory function)

The latter can cause large dispersion errors in
dynamic models (and other instabilities).

P1 ´ P0 elements do not
satisfy a stability condition!
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Multiscale Differential Complexes

These spaces are related in a closed (differential) complex:

L2Λ0pΩq
d // L2Λ1pΩq

d // L2Λ2pΩq
d // L2Λ3pΩq

‚ exterior differentials d are vieved as closed unbounded operators

‚ Note that this is a complex, i.e. d2 “ 0 and Rp dq Ă N p dq

We look at a multiscale version of this complex:

L2Λ0pΩ, A0
εq

d // L2Λ1pΩ, A1
εq

d // L2Λ2pΩ, A2
εq

d // L2Λ3pΩ, A3
εq

with norms

}u}L2ΛkpΩ,Akε q
“

›

›

›

›

b

Ak
εu

›

›

›

›

L2ΛkpΩq

for uniformly positive Ak
ε : L2Λk Ñ L2Λk
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Multiscale Differential Complexes

The domain complex is the complex of the domains of
d : L2ΛkpΩ, Ak

ε q Ñ L2Λk`1pΩ, Ak`1
ε ).

HΛ0p d, A0
εq

d // HΛ1p d, A1
εq

d // HΛ2p d, A2
εq

d // HΛ3p d, A3
εq

which are endowed with the graph norms

}u}2
HΛkp d,Akε q

“ }u}2
L2ΛkpΩq

`

›

›

›

›

b

Ak`1
ε du

›

›

›

›

2

L2Λk`1

and are therefore Hilbert spaces.

Theorem (Poincaré Inequality and Hodge decomposition)

With Bk “ dHΛk´1p d, Ak´1
ε q, Zk “ N p dq Ă HΛkp d, Ak

ε q and Hk “ Zk XBk,K we have

}u}HΛkp d,Akε q
ď C } du}HΛkp d,Akε q

, u P Zk,KV (Poincaré)

and the decompositions
L2Λkp d, Ak

ε q “ Bk k Hk kB˚k
and

HΛkp d, Ak
ε q “ Bk k Hk k Zk,KV

from the closed range theorem.
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The Weighted Hodge-Laplace Problem

Ñ Finding Helmholtz decompositions in weighted spaces helps to understand and design
stable multiscale methods.

How to find such decompositions?

Solve the weighted Hodge-Laplace euqation in each segement of the domain complex:

Hpgrad, A0
εq

∇ // Hpcurl, A1
εq

∇ˆ
// Hpdiv, A2

εq
∇¨ // L2pΩ, A3

εq

which seeks for f P L2Λk

u P DpLkq “

!

u P HΛk XHΛk,˚ | du P HΛk`1,˚ and d˚u P HΛk´1
)

such that u K Hk and (Hk harmonic forms)

Lku “ d˚Ak`1
ε du` dAk´1

ε d˚u “ f ´ PHkf

Note: Solutions are differential forms!
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The Weighted Hodge-Laplace Problem

‚ In each segment of the complex this equation takes a different form

‚ The problem is well posed

‚ There is a strong, a primal weak form and a mixed weak form

It turns out that only the mixed weak form is suitable
for discretiztaion!!!
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The Weighted Hodge-Laplace Problem
k “ 0

This is the ordinary diffusion equation in weak form as a Neumann problem with

DpLq “
 

u P Hpgradq |∇ ¨Aε∇u P L2 , Bnu “ 0
(

such that
ż

∇v ¨Aε∇u “
ż

vpf ´ PH0 q v P Hpgradq

ż

u “ 0

Boundary conditions are natural!

Ñ Neumann boundary conditions:

Bnu “ 0 on BΩ
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The Weighted Hodge-Laplace Problem
k “ 1

This is the weighted vector Laplace equation in weak form with

u P Hpcurlq XH0pdivq ,∇ˆ u P H0pcurlq , Bε∇ ¨ u P Hpgradq

such that
ż

τB´1
ε σ ´

ż

∇τ ¨ u “ 0 , τ P Hpgradq

ż

v ¨∇σ `
ż

∇ˆ v ¨Aε∇ˆ u “
ż

v ¨ f , v P Hpcurlq

with σ “ Bε∇u.

Boundary conditions are natural!

Ñ magnetic boundary conditions:

u ¨ n “ 0 and ∇ˆ uˆ n “ 0 on BΩ
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The Weighted Hodge-Laplace Problem
k “ 2

This is the weighted vector Laplace equation in weak form with

u P H0pcurlq XHpdivq , Aε∇ˆ u P Hpcurlq ,∇ ¨ u P H0pgradq

such that
ż

τA´1
ε σ ´

ż

∇ˆ τ ¨ u “ 0 , τ P Hpcurlq

ż

v ¨∇ˆ σ `
ż

∇ ¨ vBε∇ ¨ u “
ż

v ¨ f , v P Hpdivq

with σ “ Aε∇ˆ u.

Boundary conditions are natural!

Ñ electric boundary conditions:

uˆ n “ 0 and ∇ ¨ u “ 0 on BΩ
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The Weighted Hodge-Laplace Problem
k “ 3

This is the weighted Diffusion equation in mixed weak form with

DpLq “
 

u P H0pgradq |∇ ¨Aε∇u P L2
(

such that
ż

τA´1
ε σ ´

ż

∇ ¨ τ ¨ u “ 0 , τ P Hpdivq

ż

v ¨∇ ¨ σ “
ż

v ¨ f , v P L2

with σ “ Aε∇ˆ u.

Boundary conditions are natural!

Ñ Dirichlet boundary conditions:

u “ 0 on BΩ
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Discretization of Hodge-Laplace Problem

Finite element exterior calculus (FEEC) says stable discretizations can be obtained if the
diagram

Hpgradq
∇ //

Π
pgradq
ms

��

Hpcurlq
∇ˆ
//

Π
pcurlq
ms
��

Hpdivq
∇¨ //

Π
pdivq
ms
��

L2

Π
L2

��

Qms
1

∇ // Nedms
0

∇ˆ
// RTms

0
∇¨ // DQ0

commutes, i.e. we must seek bounded co-chain projections.

Can we mimic a rigorous construction of stable elements in this framework
for multiscale discretizations?
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Discretization of Hodge-Laplace Problem

Examples of Stable Discretizations
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Multiscale Discretization of Hodge-Laplace
Exampe proof only for k “ 2

Look at one coarse cell K and denote Nedk and RTk the k ´ th standard
lowest order Nédélec basis (Raviart-Thomas resp.):

Hpcurl,Kq-basis Hpdiv,Kq-basis

Find σk P Nedk `H0pcurl,Kq and
uk P ∇ˆ Nedk `H0pdiv,Kq s.th.

A´1
ε σk ´∇ˆ uk “ 0

∇ˆ σk `∇Bε∇ ¨ uk “
∇ˆ Nedk`u

˚
k1 ´ u

˚
k2

for τ P H0pcurl,Kq and
v P H0pdiv,Kq.

Find σj P H0pcurl,Kq and
uj P RTj `H0pdiv,Kq s.th.

A´1
ε σj ´∇ˆ uj “ 0

∇ˆ σj `∇Bε∇ ¨ uj “ 0

for τ P H0pcurl,Kq and
v P H0pdiv,Kq.

ÝÑ Guaranteed stability! Why?
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Multiscale Discretization of Hodge-Laplace
Only k “ 2 - Outline of Proof

Idea of proof (note: no harmonic forms):

‚ The Hpdivq-basis corrector satisfies σj “ 0
‚ uj , j “ 1, . . . , 6 is a Raviart-Thomas basis with an additional corrector u˚j with zero

normal flux condition
‚ Note that we do not care about σj
‚ Looking at the problem for σk we must make sure that we map into the appropriate

space spanned by the modified Raviart-Thomas basis
‚ Note that u˚k2

´ u˚k2
“ 0 (geometric argument)

‚ Note that ∇ˆ Nedk is a gradient with vanishing divergence
‚ This defines a corrector σ˚k for Nedk and enforces ∇ ¨ uk “ 0

Ñ Therefore, we have ∇ˆ Nedms
0 Ă RTms

0 .
Ñ Now using the definition of the DOFs (face moments) and by means of
Stokes theorem

∇ˆΠ
pcurlq
ms g “ Π

pdivq
ms ∇ˆ g , g P Hpcurlq

The Projections are Hpcurlq- and Hpdivq-bounded due to well-posedness of
the Hodge-Laplace (here with essential boundary conditions).

Q.E.D.
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Multiscale Discretization of Hodge-Laplace
Example k “ 2

Modified Nédélec Basis

Basis on a coarse cell K, left: streamlines
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Multiscale Discretization of Hodge-Laplace
k “ 2

Modified Raviart-Thomas Basis

Basis on a coarse cell K, left: streamlines
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Multiscale Discretization of Hodge-Laplace
Standard Problem k “ 2

left: high resolution standard solution; right: low resolution solution with standard basis
(wrong magnitudes and/or directions)
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Multiscale Discretization of Hodge-Laplace
Multiscale Problemk “ 2

left: high resolution standard solution; right: low resolution solution with multiscale basis
(almost correct magnitudes and directions)
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Multiscale Discretization of Hodge-Laplace
Summary and Outlook

‚ Proof can be extended to the whole complex
‚ Basis has information of fine scale structure
‚ We can show that classical multiscale FEMs are special cases of out construction

(k “ 0, 3)
‚ oversampling is possible (to reduce resonance errors)
‚ Accuracy proof through homogenization
‚ Many applications possible (Climate, Mechanics, Maxwell, MHD ...)
‚ Embedd into semi-Lagrangian reconstruction framework (data-driven setting)
‚ Code is C++ and parallel (documented, uses Deal.ii, p4est, MPI, Trilinos, TBB, VTK)
‚ Using or C++ code we computed up to 200 million DoFs on a 12 nodes cluster (scales

better with number of nodes)

Again: This Framework defines a rigorous way to add multiscale correctors
to elements constructed by FEEC – not only the ones shown.

Ñ Paper to come but Code is already on Github
https://github.com/konsim83/MPI-MSFEC!
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Thank you!

Questions? Comments?
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