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What should you take home?

Strongly-coupled ensemble data assimilation of
boundary-layer observation for the atmosphere-land interface
is possible in perfect twin experiments

We show advantages of strongly-coupled data assimilation
compared to weakly-coupled data assimilation

We show control mechanisms for the assimilation
of the 2-metre-temperature into soil moisture

C|iCkab{A If you are interested, please continue

Or you can directly jump to sections

A Introduction



Fluxes couple atmospheric boundary layer

to soil moisture

Boundary layer (COSMO)

Land (CLM) Soil moisture Clickable!
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Assimilation of boundary-layer

observations for soil moisture

Current state of the art

Weakly-coupled data assimilation
(e.g. Carrera et al., 2015)

, —— | Simplified extended Kalman filter
Boundary layer (COSMO) | (e.g. Hess et al., 2001; Rosnay et al., 2013)

Updating of soil moisture to correct
biases in atmospheric boundary layer

Negative assimilation impact

on soil moisture
(e.g. Munoz-Sabater et al., 2019; Carrera et al., 2019)

Land (CLM) Soil moisture

What is the impact of strongly-coupled ensemble data assimilation on
the assimilation of the 2-metre-temperature into soil moisture?
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Compare strongly-coupled data assimilation with
weakly-coupled data assimilation for the atmosphere-land interface

Use an state-of-the-art 3D ensemble data assimilation system
together with a fully-coupled model system

Use simple perfect twin experiments
with initial soil perturbations only
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Differences are driven by initial soil

perturbations and data assimilation only

Initial conditions| | ENSEMBLEw/o

data assimilation
20!: moisture + Update of LETKF Soil
oil temperature . . “Weaklv-coupled”
oerturbations Soil moisture y-coup
Initial conditions +ABL temp. LETKF Soil+Temp
—> -
for ensemble "Strongly-coupled”
“41”. ensemble 2-metre-temperature
member observations 7-day period
Same model as Hourly ¢+ Errors 36 hours spin-up
Initial conditions Perfect model exp.
—> —> NATURE run Hourly LETKF filtering
for nature run
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Results overview

LETKF Soil+Temp experiment has lower errors than the
LETKF Soil experiment

Strongly-coupled data assimilation is more consistent across the
interface compared to weakly-coupled assimilation

Processes within the atmospheric boundary layer have an impact
on the data assimilation for soil moisture

s




Assimilation of the 2-metre-temperature

improves the soil moisture analysis
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Strongly-coupled data assimilation has a

more consistent assimilation impact

More consistent increments Improved representation of
at the first day T2m for soil moisture
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Positive impact caused by theoretical and

practical advantages of consistent updates

Theory

Strongly-coupled data assimilation improves consistency and
reduces chances of “correcting the same error twice”

Decreased magnitude of innovations

Increased covariances across compartments

s




Processes in boundary layer have an

impact on soil moisture

Error decrease due to assimilation
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Localisation has to be process-dependent

e Frror gain —— 08/01 1200 UTC
=== [insemble gain —— 08/01 1900 UTC
==== [ ocalised ensemble gain 08/03 0600 UTC . .. .
— Best option: No assimilation
X

. —> Localisation=0

Localisation perfect

Covariance (K mm3/mma3)

Localisation too small

| 1 I
0 10000 20000 30000 40000

Horizontal Distance (m)
Covariance between T2m and soil moisture
dependent on distance between grid points
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Conclusion overview

Summary: 3D LETKF assimilation of T2m into soil moisture
improves soil moisture in perfect twin experiments

Tackling of negative assimilation impact caused by ensemble
and non-linearities with fingerprinter operators + smoothing

Strongly-coupled data assimilation of boundary-layer observations
improves consistency for the atmosphere-land interface




s

Summary

Simple perfect twin experiments with initial soil
perturbations only
— Assimilation with LETKF of T2m into soil moisture

Positive assimilation impact on soil moisture and
atmospheric boundary layer

Additional updating the atmospheric temperature
decreases error in soil moisture

Process-based disentanglement of assimilation impact
shows impact of boundary-layer on assimilation

Inflation and localisation have a slightly negative impact on
assimilation - How to choose right tuning parameters?



Outlook

Delayed impact of soil moisture on boundary-layer
observations = Smoothing instead of filtering

“Lazyness” of ensemble comparable to spin-up problem

— Running-in-place or no-cost-smoother approach
(Kalnay and Yang, 2010)

Use of derived observations (e.g. temporal T2m gradient)
to tackle lazyness and non-linearities - Fingerprint operators

Process-dependent localisation and inflation
— Additional statistical models for localisation and inflation
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Conclusions

Strongly-coupled data assimilation improves consistency in
atmosphere-land interface — Positive assimilation impact

We can use boundary-layer observations in a fully-coupled
hydrology model to infer soil moisture with 3D assimilation

Processes in the boundary-layer have a major impact on
assimilation at the atmosphere-land interface
— We need new ideas for “real-world” data assimilation

Do you have questions?




Sensible heat flux couples atmospheric

temperature to soil moisture during day-time
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Latent heat flux couples atmospheric

humidity to soil moisture
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Strongly-coupled data assimilation uses an

unified data assimilation across comparments

Weakly-coupled
Observations for Analvsic at "
the atmosphere nalysis atmospnere
Observations for :
the atmosphere Analysis land
Strongly-coupled

Combined .
Coupled analysis Coupled model system

=

ag Coupled model system
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3D-Ensemble Data Assimilation system

with a fully-coupled model system

Data assimilation

Localised Ensemble Transform Kalman filter
Gaspari-Cohn localisation —Horizontal radius: 15 km
Small multiplicative inflation: y =1.006
Python-based: https://gitlab.com/tobifinn/torch-assimilate

Fully-coupled model system

TerrSysMP (Shrestha et al., 2014, doi:10.1175/MWR-D-14-00029.1)
Atmosphere: COSMO 4.21

Land: Community Land Model 3.5
Coupler: Oasis 3 MCT

=
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https://gitlab.com/tobifinn/torch-assimilate

Correlated perturbations in soil moisture

and soil temperature
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NATURE run is initialised as a single

additional ensemble member

Initial soil moisture perturbations compared to ENSEMBLE mean
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ENSEMBLE spread is representative for

error to NATURE run

Rank histogram for all grid points compared to NATURE run

0 1 4.0

.

Small N\ 2°

bias

30 1 i 0.5
40 . : : , 0.25

Time (UTC) Relative occurrence compared
to uniform distribution

/

07-31 00
08-01 00
08-02 00 A
08-03 00
08-04 00 A
08-05 00
08-06 00 -
8-07 00

A Introduction



LETKF Soil has a similar spread as

ENSEMBLE experiment

Rank histogram for all grid points compared to NATURE run
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LETKF Soil+Temp has a similar spread as

ENSEMBLE experiment

Rank histogram for all grid points compared to NATURE run
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Mainly sunny and dry weather conditions

Fraction of grid points
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99 Virtual observation at DWD

measurement sites

Model orography with 3D LETKF observational equivalents
observation points per grid point
(grey: boundary area) estimated based on localisation
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Innovations are decreased due to

additional temperature updates
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Negative impact due to nocturnal

boundary layer transition

Transition from weakly-stratified to
strongly-stratified boundary layer

“Lazyness” of ensemble
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Increased magnitude of gain

—> T2m perturbations are more representative
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Covariance reinforcement mechanism

caused by non-linear sensible heat flux

Time of inversion is soil moisture dependent

Atmosphere ™ [ it o e /2]
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Binned over the 7 days, all grid points and

m all ensemble members
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| — Positive coupling between

T2m and soil moisture due to humidity

Diurnal cycle over the 7 days and all grid points
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Il - Negative impact due to morning

transition and canopy evaporation

Mean heat flux
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lll — Positive impact caused by strong

coupling via sensible heat flux
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IV — Reinforcement mechanism increases

correlation between T2m and soil moisture
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Covariance reinforcement mechanism

caused by non-linear sensible heat flux

Time of inversion is soil moisture dependent

Atmosphere ™ [ it o e /2]

? L1002 . Cooler temperatures
= : have earlier inversion
Surface s :
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P 'z Stronger differences
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Binned over the 7 days, all grid points and

m all ensemble members
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V — Negative impact due to

nocturnal boundary layer transition

Transition from weakly-stratified to
strongly-stratified boundary layer
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Contact and publication

E-Mail address:
tobias.sebastian.finn@uni-hamburg.de

Publication (to be submitted, including comparison to SEKF):

Finn, Tobias Sebastian, Gernot Geppert, and Felix Ament. “Towards
strongly-coupled ensemble data assimilation of boundary-layer
observations for the atmosphere-land interface”, to be submitted to

"Hydrology and Earth System Science”, 2020.
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