

International Max Planck Research School on Earth System Modelling

Max-Planck-Institut für Meteorologie

05. May 2020 EGU General Assembly 2020

Strongly-coupled ensemble data assimilation of boundary-layer observations for the atmosphere-land interface

<u>Tobias Sebastian Finn</u>¹, Gernot Geppert², Felix Ament¹

¹Meteorological Institute, Universität Hamburg ²Deutscher Wetterdienst

tobias.sebastian.finn@uni-hamburg.de

What should you take home?

Strongly-coupled ensemble data assimilation of boundary-layer observation for the atmosphere-land interface is possible in perfect twin experiments

We show advantages of strongly-coupled data assimilation compared to weakly-coupled data assimilation

We show control mechanisms for the assimilation of the 2-metre-temperature into soil moisture

Fluxes couple atmospheric boundary layer to soil moisture

Assimilation of boundary-layer observations for soil moisture

Current state of the art

Weakly-coupled data assimilation (e.g. Carrera et al., 2015) Simplified extended Kalman filter (e.g. Hess et al., 2001; Rosnay et al., 2013) Updating of soil moisture to correct biases in atmospheric boundary layer

Negative assimilation impact on soil moisture

(e.g. Muñoz-Sabater et al., 2019; Carrera et al., 2019)

What is the impact of strongly-coupled ensemble data assimilation on the assimilation of the 2-metre-temperature into soil moisture?

Land (CLM)

2-metre-temperature 2-metre-humidity

Soil moisture

Evaporation Transpiration

Sensible 1

heat flux

Boundary layer (COSMO)

Our plan

Compare strongly-coupled data assimilation with weakly-coupled data assimilation for the atmosphere-land interface

Use an state-of-the-art 3D ensemble data assimilation system together with a fully-coupled model system

Use simple perfect twin experiments with initial soil perturbations only

Setup

Differences are driven by initial soil perturbations and data assimilation only

Results overview

LETKF Soil+Temp experiment has lower errors than the LETKF Soil experiment

Strongly-coupled data assimilation is more consistent across the interface compared to weakly-coupled assimilation

Processes within the atmospheric boundary layer have an impact on the data assimilation for soil moisture

Assimilation of the 2-metre-temperature improves the soil moisture analysis

Conclusion

Strongly-coupled data assimilation has a more consistent assimilation impact

Positive impact caused by theoretical and practical advantages of consistent updates

Theory

Strongly-coupled data assimilation improves consistency and reduces chances of "correcting the same error twice"

Decreased magnitude of innovations

Increased covariances across compartments

Processes in boundary layer have an impact on soil moisture

Error decrease due to assimilation

Localisation has to be process-dependent

Conclusion overview

Summary: 3D LETKF assimilation of T2m into soil moisture improves soil moisture in perfect twin experiments

Tackling of negative assimilation impact caused by ensemble and non-linearities with fingerprinter operators + smoothing

Strongly-coupled data assimilation of boundary-layer observations improves consistency for the atmosphere-land interface

Setup

Results

Summary

Simple perfect twin experiments with initial soil perturbations only

 \rightarrow Assimilation with LETKF of T2m into soil moisture

Positive assimilation impact on soil moisture and atmospheric boundary layer

Additional updating the atmospheric temperature decreases error in soil moisture

Process-based disentanglement of assimilation impact shows impact of boundary-layer on assimilation

Inflation and localisation have a slightly negative impact on assimilation \rightarrow How to choose right tuning parameters?

Outlook

Delayed impact of soil moisture on boundary-layer observations → Smoothing instead of filtering

"Lazyness" of ensemble comparable to spin-up problem → Running-in-place or no-cost-smoother approach (Kalnay and Yang, 2010)

Use of derived observations (e.g. temporal T2m gradient) to tackle lazyness and non-linearities → Fingerprint operators

Process-dependent localisation and inflation
→ Additional statistical models for localisation and inflation

Conclusions

Strongly-coupled data assimilation improves consistency in atmosphere-land interface \rightarrow Positive assimilation impact

We can use boundary-layer observations in a fully-coupled hydrology model to infer soil moisture with 3D assimilation

Processes in the boundary-layer have a major impact on assimilation at the atmosphere-land interface → We need new ideas for "real-world" data assimilation

Do you have questions?

Sensible heat flux couples atmospheric temperature to soil moisture during day-time

Back

•

Setup

Results

Conclusion

Latent heat flux couples atmospheric humidity to soil moisture

Setup

Results

Conclusion

Strongly-coupled data assimilation uses an unified data assimilation across comparments

Weakly-coupled

3D-Ensemble Data Assimilation system with a fully-coupled model system

Data assimilation

Localised Ensemble Transform Kalman filter Gaspari-Cohn localisation – Horizontal radius: 15 km Small multiplicative inflation: γ = 1.006 Python-based: https://gitlab.com/tobifinn/torch-assimilate

Fully-coupled model system

TerrSysMP (Shrestha et al., 2014, doi:10.1175/MWR-D-14-00029.1) Atmosphere: COSMO 4.21 Land: Community Land Model 3.5 Coupler: Oasis 3 MCT

Back

Correlated perturbations in soil moisture and soil temperature

NATURE run is initialised as a single additional ensemble member

Initial soil moisture perturbations compared to ENSEMBLE mean

Back

ENSEMBLE spread is representative for error to NATURE run

Rank histogram for all grid points compared to NATURE run

LETKF Soil has a similar spread as **ENSEMBLE** experiment

Rank histogram for all grid points compared to NATURE run

Introduction

Setup

LETKF Soil+Temp has a similar spread as ENSEMBLE experiment

Rank histogram for all grid points compared to NATURE run

Setup

Multiplicative inflation γ=1.006

Conclusion

Results

Introduction

Mainly sunny and dry weather conditions

99 Virtual observation at DWD measurement sites

Blue: more "observations" at grid point than 1D assimilation (e.g. SEKF)

Innovations are decreased due to additional temperature updates

Diurnal cycle over the 7 days and all observations

Negative impact due to nocturnal boundary layer transition

Increased magnitude of gain → T2m perturbations are more representative

Diurnal cycle over the 7 days and all grid points

Covariance reinforcement mechanism caused by non-linear sensible heat flux

Time of inversion is soil moisture dependent

Cooler temperatures have earlier inversion

Stronger differences in temperature perts.

Increased covariance

Binned over the 7 days, all grid points and all ensemble members

Back

I – Positive coupling between T2m and soil moisture due to humidity

Diurnal cycle over the 7 days and all grid points

II – Negative impact due to morning transition and canopy evaporation

III – Positive impact caused by strong coupling via sensible heat flux

IV – Reinforcement mechanism increases correlation between T2m and soil moisture

Covariance reinforcement mechanism caused by non-linear sensible heat flux

Time of inversion is soil moisture dependent

Cooler temperatures have earlier inversion

Stronger differences in temperature perts.

Increased covariance

Binned over the 7 days, all grid points and all ensemble members

Back

V – Negative impact due to nocturnal boundary layer transition

Contact and publication

<u>E-Mail address:</u> tobias.sebastian.finn@uni-hamburg.de

<u>Publication (to be submitted, including comparison to SEKF):</u> Finn, Tobias Sebastian, Gernot Geppert, and Felix Ament. "Towards strongly-coupled ensemble data assimilation of boundary-layer observations for the atmosphere-land interface", to be submitted to "Hydrology and Earth System Science", 2020.

