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Objectives

1D Magnetotellurics:

vertical changes of electrical conductivity

 Powerful to recover horizontal 

structures 

Gravity:

lateral variations in density 

 Powerful to recover vertical contacts 

between units 

Use of complementary information 

from structural and petrophysical 

point of view

MT Gravi

Petrophysics: Units with same density 

or resistivity, but fewer with same values 

in both resistivity & density

Petro

Gravi

MT

Petro

 Cooperative workflow using standalone inversions

 Probabilistic 1D MT

 Deterministic 2D/3D gravity inversion
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Workflow 

Probabilistic 1D 
MT modelling 

1
Probability of rock 

units 

Ensemble of 1D models

𝑃rock=1,..,𝑁 ∈ 0,1Standalone MT inversion

Domains of possible 
lithologies

2

1D  2D/3D interpolation of probabilities 

𝑃rock=1,..,𝑁 = 𝑠𝑖𝑔𝑛(𝜓𝑘=1,..,𝑁)Extraction of information

Multiple bound constraints 
disjoint intervals

3
MT-constrained 
density model

Assigning density ranges 

Standalone gravity inversion
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1D probabilistic MT Data inversion
• 1D trans-dimensional Markov chain Monte Carlo sampler  collection of models fitting data

• Robust to non-1D effects present in the data (Seillé and Visser, 2020).

 1D MT probabilistic inversions are represented as ensembles of 1D 

models for each site, each of them satisfying the data within its 

uncertainty. 

High probability 

Low probability 
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Range of density contrast used allowed in gravity inversion

−∞ +∞
No use

Black holeNegative density particles

Hydrogen Iridium

[ ]
−∞ +∞

Common sense

Usage of prior info

[ ] [ ] [ ]
−∞ +∞

Elementary

Observed rock 1 Observed rock 2 Observed rock 3

[ ]
[ ] [ ] [ ] Using domains

 Values to choose from vary in space accordingly with domains 

Multiple bound constraints using domains

Spatially 

invariant

Spatially 

varying

Ogarko et al., 2020
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• 3D MT forward simulation computed 

for 16 MT sites along a line (ModEM)

• Frequency range: 10kHz – 0.01Hz

• + 5% Gaussian noise

• 128 gravity measurements along line

Proof-of-concept MT+gravi
Synthetic model 

20 ohm.m, 0 kg/m3

10 ohm.m, 110 kg/m3

5000 ohm.m, 170 kg/m3

2000 ohm.m, 300 kg/m3

5000 ohm.m, 240 kg/m3

Geological structural model from Pakyuz-Charier 2018;

Gravity and density model from Giraud et al. 2019

resistivity

density
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• 1D ensembles of each MT site are filtered given prior assumption on the 

lithologies’ resistivities and fused along the 2D line given prior 

assumption on spatial lateral continuity (Visser 2019)

Proof-of-concept
1D probabilistic MT Data inversion and fusion into 2D



9

Proof-of-concept
Inversion results 

Gravity inversion using disjoint 

multiple bound constraints 

Domains using all model 

realizations from probabilistic 

MT inversion 
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Conclusion and discussion
 Undercover imaging, basement 

 Results from probabilistic MT inv

 Constraints for gravity  basement

 Cooperative workflow using standalone inversions

 Probabilistic 1D MT

 Deterministic 2D/3D gravity inversion using MT 

domaining

 Next step – field application, Eucla-Gawler line in 

Western Australia, depth of cover estimation 

Gravi

MT

Petro

[ ]
[ ] [ ] [ ]
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Eucla-Gawler line

Real-world application

130+ broadband MT sites 

High resolution gravity 

 Thickness of cover 

 Depth to basement

Finish note: current investigation 

Colour: Bouguer anomaly.

Courtesy of Geological Survey of Western Australia (GSWA)
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Questions   


