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Dichloromethane in aquifers

Dichloromethane (DMC) is one of the most common chlorinated methanes often detected in groundwater 

as a result of extensive use, inappropriate disposal and accidental spills1,4. 

Why studying water table fluctuations?

> Spreading of pollutants across the saturated and unsaturated zone (e.g., volatile compounds).

> Changes in redox conditions and microbial composition that may further impact pollutant degradation.

Research questions

> What is the impact of water table fluctuations on the extent of DCM in-situ degradation in aquifers? 

> What are the main mechanisms and pathways of DCM dissipation in aquifers?

Dual-element CSIA and high-throughput analysis may help?



Dimensions: 160 x 80 x 7 cm³

Flow rate: 0.33 mL/min

DCM injection: 0.45 mM/L

Oxygen content: < 0.3 mg/L

Residence time: 31 days 

Laboratory aquifers under near-natural settings

Flow direction
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Oxygen evolution: transient conditions



Material and methods

O2

Fe2+

High-resolution sampling:

 Quantification of DCM

 Isotope analysis of ¹³C (GC-IRMS) and ³⁷Cl (GC-MS)

 DNA analysis

 Hydrochemical parameters

Iron-reducing conditions in both aquifers

Core sampling for DNA analysis

Pore water
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Fluctuating condition 

Mass dissipation and carbon isotope composition of DCM 
Steady-state condition



Dual-element CSIA: mechanisms of DCM degradation 

Unknown mechanism under strictly anoxic conditions.

a. Similar mechanims as Ca. Dichloromethamonas elyunquensis.

b. Combination of different mechanisms (apparent).

Fluctuating condition
ΛC/Cl = 3.41 ± 0.50

Steady-state condition
ΛC/Cl = 1.68 ± 0.26
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 Dual C-Cl isotope plot of DCM degradation under transient 

(red dots) and steady-state (gray triangles) conditions. 

 Reported mechanisms by Hyphomicrobium MC8b2, D. 

formicoaceticum3, Ca. Dichloromethamonas

elyunquensis3,6 and Dehalobacterium sp.4 have been 

added for comparison. 



 NMDS ordination of bacterial communities in pore water and sand 

compartment. Depth in cm from surface to bottom. 

 Representation of relative abundance of taxa 

from phylum to genus level in pore water.

Pore water 

Bacterial community analysis Evidence of anaerobic DCM degraders: 

Dehalobacterium4, Geobacter5, 

Desulfosporosinus6,7.
Sand



• Pronounced carbon isotope fractionation of DCM associated with large DCM mass removal under fluctuating conditions

(>90%) compared to steady-state conditions (mass removal of 35%).

• Distinct DCM degradation pathways under steady and fluctuating conditions:

=> mechanistically distinct C-Cl bond cleavage reactions subjected to microbial adaptations during dynamic

hydrogeological conditions?

• Occurrence of anaerobic DCM degraders under both steady and fluctuating conditions:

=> supports DCM degradation under iron-reducing prevailing conditions.

Water table fluctuations enhance DCM biodegradation and influence DCM degradation pathways compared to 

steady-state conditions. 

Highlights
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