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Dichloromethane in aquifers

Dichloromethane (DMC) is one of the most common chlorinated methanes often detected in groundwater 

as a result of extensive use, inappropriate disposal and accidental spills1,4. 

Why studying water table fluctuations?

> Spreading of pollutants across the saturated and unsaturated zone (e.g., volatile compounds).

> Changes in redox conditions and microbial composition that may further impact pollutant degradation.

Research questions

> What is the impact of water table fluctuations on the extent of DCM in-situ degradation in aquifers? 

> What are the main mechanisms and pathways of DCM dissipation in aquifers?

Dual-element CSIA and high-throughput analysis may help?



Dimensions: 160 x 80 x 7 cm³

Flow rate: 0.33 mL/min

DCM injection: 0.45 mM/L

Oxygen content: < 0.3 mg/L

Residence time: 31 days 

Laboratory aquifers under near-natural settings

Flow direction
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Oxygen evolution: transient conditions



Material and methods

O2

Fe2+

High-resolution sampling:

 Quantification of DCM

 Isotope analysis of ¹³C (GC-IRMS) and ³⁷Cl (GC-MS)

 DNA analysis

 Hydrochemical parameters

Iron-reducing conditions in both aquifers

Core sampling for DNA analysis

Pore water
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Fluctuating condition 

Mass dissipation and carbon isotope composition of DCM 
Steady-state condition



Dual-element CSIA: mechanisms of DCM degradation 

Unknown mechanism under strictly anoxic conditions.

a. Similar mechanims as Ca. Dichloromethamonas elyunquensis.

b. Combination of different mechanisms (apparent).

Fluctuating condition
ΛC/Cl = 3.41 ± 0.50

Steady-state condition
ΛC/Cl = 1.68 ± 0.26
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 Dual C-Cl isotope plot of DCM degradation under transient 

(red dots) and steady-state (gray triangles) conditions. 

 Reported mechanisms by Hyphomicrobium MC8b2, D. 

formicoaceticum3, Ca. Dichloromethamonas

elyunquensis3,6 and Dehalobacterium sp.4 have been 

added for comparison. 



 NMDS ordination of bacterial communities in pore water and sand 

compartment. Depth in cm from surface to bottom. 

 Representation of relative abundance of taxa 

from phylum to genus level in pore water.

Pore water 

Bacterial community analysis Evidence of anaerobic DCM degraders: 

Dehalobacterium4, Geobacter5, 

Desulfosporosinus6,7.
Sand



• Pronounced carbon isotope fractionation of DCM associated with large DCM mass removal under fluctuating conditions

(>90%) compared to steady-state conditions (mass removal of 35%).

• Distinct DCM degradation pathways under steady and fluctuating conditions:

=> mechanistically distinct C-Cl bond cleavage reactions subjected to microbial adaptations during dynamic

hydrogeological conditions?

• Occurrence of anaerobic DCM degraders under both steady and fluctuating conditions:

=> supports DCM degradation under iron-reducing prevailing conditions.

Water table fluctuations enhance DCM biodegradation and influence DCM degradation pathways compared to 

steady-state conditions. 

Highlights
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