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 Complex physical phenomenon

 Break of the frozen-in magnetic field

 Magnetic energy release

 Transport mechanism, particle acceleration

 Magnetic Electron Diffusion Region (EDR)

 Occurring in many plasma environments

 Sun: flares, CME

 Earth’s magnetosphere: magnetopause, magnetotail

 MMS mission

Image Credit: NASA MMS
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Detection of reconnection
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Burch et al. 2016

 EDR is very small

 The precise detection is hard

 Use of indirect signatures 

 Usually two groups

 Field quantities

 Statistical moments
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Detection of reconnection
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Burch et al. 2016

 EDR is very small

 The precise detection is hard

 Use of indirect signatures 

 Usually two groups

 Field quantities

 Statistical moments

Third approach: using directly the distribution
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Particle distributions

6

Burch et al. 2016

 Rich part of the information

 MMS mission: crescent shape

 Electron dynamics dominates

 Beams, power law, top-hat

 But very large data

 3D velocity space

 Spatial space

 Temporal aspect
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Particle distributions

7

Burch et al. 2016

 Rich part of the information

 MMS mission: crescent shape

 Electron dynamics dominates

 Beams, power law, top-hat

 But very large data

 3D velocity space

 Spatial space

 Temporal aspect

Extract automatically information from the particle distributions
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Machine learning
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Supervised vs. unsupervised
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 Supervised learning

 Regression

 Classification

 Unsupervised learning

 Clustering

 Dimension reduction

 Density estimation

Credit S. CarrazzaCredit S. Carrazza
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Related work
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 Automated classification of plasma regions using 3D 

particle energy distribution. MMS mission: crescent 

shape, Olshevsky V. et al, 2019

 Automatic Detection of Magnetospheric Regions around 

Saturn using Cassini Data, Yeakel, K et al., 2017

 Automatic detection of magnetopause reconnection

diffusion regions, Garnier P. et al.

We want to privilege unsupervised approaches
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Density estimation
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 Building an estimate of the probability density function  
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 Building an estimate of the probability density function  

 Non-parametric methods

 Histogram

 Kernel Density Estimation
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 Building an estimate of the probability density function  

 Non-parametric methods

 Histogram

 Kernel Density Estimation

 Parametric methods

 Fitting given distributions

 Gaussian Mixture Models (GMM)
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 Building an estimate of the probability density function  

 Non-parametric methods

 Histogram

 Kernel Density Estimation

 Parametric methods

 Fitting given distributions

 Gaussian Mixture Models (GMM)
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 Gaussian probability distribution
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Gaussian Mixture models
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 Gaussian probability distribution

 Sum of Gaussians (mixture)

 Parameters to find  

Credit Rémi Emonet

𝑝 𝑥 = 0.3𝑁1 + 0.7𝑁2
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 Gaussian probability distribution

 Sum of Gaussians (mixture)

 Parameters to find

Credit Rémi Emonet

Number of 

components

𝑝 𝑥 = 0.3𝑁1 + 0.7𝑁2
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Gaussian Mixture Model
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 How to infer the best parameters ? Maximum likelihood estimation

 Maximizing the likelihood estimation

 Non linear maximization problem

 No closed form

 Need to find numerical local maximum: Expectation Maximization
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 Very effective for models with unobserved latent variables
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 Very effective for models with unobserved latent variables
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Model selection
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 How to determine the number of components K?
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 How to determine the number of components K?

 Information theory

 Aikaike Information Criterion

 Bayesian Information Criterion
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 How to determine the number of components K?

 Information theory

 Aikaike Information Criterion

 Bayesian Information Criterion

Goodness of fitComplexity
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Model selection
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 How to determine the number of components K?

 Information theory

 Aikaike Information Criterion

 Bayesian Information Criterion

 Various interpretation to the number of components K

 Beams/electron subpopulation

 Complex distribution

 Deviation from a Gaussian (tail, mode width, etc.)

Goodness of fitComplexity
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Simulations
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 Access to the complete description of the plasma over all the spatial grid

 2.5D collisionless Particle In Cell simulations

 iPic3D (Markidis et al.)

 Double Harris sheet case, weak guide field

 Grid: 769 x 1025 (30di x 40 di)

 196,000,000 particles (~250 particles/cell)

 Weighted particle injection

 B-field-aligned basis
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Number of components
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Number of components (GMM) Measure of gyrotropy (Moment based)
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Number of components (GMM) Measure of gyrotropy (Moment based)
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Number of components (GMM) Measure of gyrotropy (Moment based)

EDR OutflowInflow

Number of components
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Number of components (GMM) Measure of gyrotropy (Moment based)

Number of components
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Analyzing the mixtures
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 Thermal energy of the distribution
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 Thermal energy of the distribution

 Variance of the mixture:
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 Thermal energy of the distribution

 Variance of the mixture:
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Analyzing the mixtures: energy drop and deviation
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 Thermal energy of the distribution

 Variance of the mixture:

 Diagnostic quantities
𝐸𝑡ℎ𝑒𝑟𝑚𝑎𝑙
(𝐾)

𝐸𝑑𝑒𝑣
(𝐾)
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Analyzing the mixtures: energy drop and deviation
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Next steps
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 Simulation: focus on less documented cases

 2D turbulent reconnection

 3D reconnection

 Other kind of simulations

 Observation: distributions from in situ space missions

 MMS data

 Reconstruction of the particle sampling

 Machine learning: potential improvement

 Convolutional methods and auto encoder

 Dual problem with kernel method 
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MMS observation: day side 2015
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 Reconnection event: 16 October 2015-13:07:02.235 (Burch et al.)

 Gap due to low energy channels

 Complex preprocessing pipeline

 Identify crescent shape

 Auto encoder may help (Olshevsky et al)

 Extract 3D features

 Use the PDF directly

Vpara

Vperp
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Turbulent simulation
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 Identification of potential current layers
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Turbulent simulation
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 Identification of potential current layers

Edev
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Conclusion
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 GMM is able to identify complex distributions in various cases

 Reconnection with weak and strong guide fields

 Help to analyze and identify reconnection

 No real physical interpretation and no unique solution

 GMM as a start in applying ML on simulations and particles

 Other ML methods are considered

 Auto encoder, SOM, etc.
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Thank you for your attention

Contact: romain.dupuis@kuleuven.be
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Gaussian Mixture Model
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 How to infer the best parameters ? 

 Maximizing the likelihood estimation

 Non linear maximization problem

 No closed form

 Need to find numerical local maximum: Expectation Maximization
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EM Algorithm
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Expectation Step

Maximization Step
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