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 Complex physical phenomenon

 Break of the frozen-in magnetic field

 Magnetic energy release

 Transport mechanism, particle acceleration

 Magnetic Electron Diffusion Region (EDR)

 Occurring in many plasma environments

 Sun: flares, CME

 Earth’s magnetosphere: magnetopause, magnetotail

 MMS mission

Image Credit: NASA MMS
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Burch et al. 2016

 EDR is very small

 The precise detection is hard

 Use of indirect signatures 

 Usually two groups

 Field quantities

 Statistical moments
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Burch et al. 2016

 EDR is very small

 The precise detection is hard

 Use of indirect signatures 

 Usually two groups

 Field quantities

 Statistical moments

Third approach: using directly the distribution
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Burch et al. 2016

 Rich part of the information

 MMS mission: crescent shape

 Electron dynamics dominates

 Beams, power law, top-hat

 But very large data

 3D velocity space

 Spatial space

 Temporal aspect
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Burch et al. 2016

 Rich part of the information

 MMS mission: crescent shape

 Electron dynamics dominates

 Beams, power law, top-hat

 But very large data

 3D velocity space

 Spatial space

 Temporal aspect

Extract automatically information from the particle distributions
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Supervised vs. unsupervised
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 Supervised learning

 Regression

 Classification

 Unsupervised learning

 Clustering

 Dimension reduction

 Density estimation

Credit S. CarrazzaCredit S. Carrazza
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 Automated classification of plasma regions using 3D 

particle energy distribution. MMS mission: crescent 

shape, Olshevsky V. et al, 2019

 Automatic Detection of Magnetospheric Regions around 

Saturn using Cassini Data, Yeakel, K et al., 2017

 Automatic detection of magnetopause reconnection

diffusion regions, Garnier P. et al.

We want to privilege unsupervised approaches
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Density estimation
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 Building an estimate of the probability density function  
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 Gaussian probability distribution
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 Gaussian probability distribution

 Sum of Gaussians (mixture)

 Parameters to find  

Credit Rémi Emonet

𝑝 𝑥 = 0.3𝑁1 + 0.7𝑁2
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 Gaussian probability distribution

 Sum of Gaussians (mixture)

 Parameters to find

Credit Rémi Emonet

Number of 

components

𝑝 𝑥 = 0.3𝑁1 + 0.7𝑁2
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Gaussian Mixture Model
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 How to infer the best parameters ? Maximum likelihood estimation

 Maximizing the likelihood estimation

 Non linear maximization problem

 No closed form

 Need to find numerical local maximum: Expectation Maximization
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 Very effective for models with unobserved latent variables
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 Very effective for models with unobserved latent variables
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 How to determine the number of components K?
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Model selection
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 How to determine the number of components K?

 Information theory

 Aikaike Information Criterion

 Bayesian Information Criterion

 Various interpretation to the number of components K

 Beams/electron subpopulation

 Complex distribution

 Deviation from a Gaussian (tail, mode width, etc.)

Goodness of fitComplexity
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Simulations
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 Access to the complete description of the plasma over all the spatial grid

 2.5D collisionless Particle In Cell simulations

 iPic3D (Markidis et al.)

 Double Harris sheet case, weak guide field

 Grid: 769 x 1025 (30di x 40 di)

 196,000,000 particles (~250 particles/cell)

 Weighted particle injection

 B-field-aligned basis
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Number of components (GMM) Measure of gyrotropy (Moment based)
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Number of components (GMM) Measure of gyrotropy (Moment based)
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Number of components (GMM) Measure of gyrotropy (Moment based)

EDR OutflowInflow

Number of components
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Number of components (GMM) Measure of gyrotropy (Moment based)

Number of components
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Analyzing the mixtures
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 Thermal energy of the distribution



EGU 2020 06 May 2020 

Analyzing the mixtures

36

 Thermal energy of the distribution

 Variance of the mixture:



EGU 2020 06 May 2020 

Analyzing the mixtures

37

 Thermal energy of the distribution

 Variance of the mixture:
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Analyzing the mixtures: energy drop and deviation
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 Thermal energy of the distribution

 Variance of the mixture:

 Diagnostic quantities
𝐸𝑡ℎ𝑒𝑟𝑚𝑎𝑙
(𝐾)

𝐸𝑑𝑒𝑣
(𝐾)
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Analyzing the mixtures: energy drop and deviation
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Next steps
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 Simulation: focus on less documented cases

 2D turbulent reconnection

 3D reconnection

 Other kind of simulations

 Observation: distributions from in situ space missions

 MMS data

 Reconstruction of the particle sampling

 Machine learning: potential improvement

 Convolutional methods and auto encoder

 Dual problem with kernel method 
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MMS observation: day side 2015
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 Reconnection event: 16 October 2015-13:07:02.235 (Burch et al.)

 Gap due to low energy channels

 Complex preprocessing pipeline

 Identify crescent shape

 Auto encoder may help (Olshevsky et al)

 Extract 3D features

 Use the PDF directly

Vpara

Vperp
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Turbulent simulation
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 Identification of potential current layers
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Turbulent simulation
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 Identification of potential current layers

Edev
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Conclusion
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 GMM is able to identify complex distributions in various cases

 Reconnection with weak and strong guide fields

 Help to analyze and identify reconnection

 No real physical interpretation and no unique solution

 GMM as a start in applying ML on simulations and particles

 Other ML methods are considered

 Auto encoder, SOM, etc.
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Thank you for your attention

Contact: romain.dupuis@kuleuven.be
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Gaussian Mixture Model
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 How to infer the best parameters ? 

 Maximizing the likelihood estimation

 Non linear maximization problem

 No closed form

 Need to find numerical local maximum: Expectation Maximization
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EM Algorithm
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Expectation Step

Maximization Step
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Detection algorithm
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