

Response of soil N₂ and N₂O fluxes to denitrification control factors in two agricultural soils

A. Matson, S. Burkart, B. Grosz, J.R. Köster, S. Merl, R. Well

Introduction

Controlling soil nitrogen (N) cycling to mitigate Noxide emissions and optimize N use efficiency is an important aspect of agricultural soil management.

Denitrification models can be used to support decision-making but are limited by a lack of soil N₂ flux data.

Measurements of soil N₂ fluxes are challenging due to methodological limitations and the spatial/temporal heterogeneity of denitrification in soils.

 N_2O

NO

Materials and methods

Laboratory incubations

- Soil origin: Germany; Fuhrberg (sandy Podzol) and Rotthalmünster (silty loam Luvisol)
- Soil preparation: sieved, air-dried, pre-incubated, added nitrogen (with and without ¹⁵N label), packed into cores (see left)
- Incubation: flushing with helium to create a low-N₂ atmosphere*
- Soil treatments during incubation:
 - type and amount of plant litter (ryegrass or maize)
 - variable low oxygen (O_2) or aerobic $(20\% O_2)$
 - changing soil moisture (water-filled pore space; WFPS)

^{*} Well R, Burkart S, Giesemann A, Grosz B, Köster JR, Lewicka-Szczebak D. Improvement of the 15N gas flux method for *in situ* measurement of soil denitrification and its product stoichiometry. *Rapid Commun Mass Spectrom*. 2019;33:437–448. https://doi.org/10.1002/rcm.8363

Preliminary results - sandy Podzol (time series)

Preliminary results – silty loam Luvisol (litter treatments)

THÜNEN

Points to note

Total denitrification (N₂+N₂O) vs N₂O measurement alone

 Denitrification activity can be significantly underestimated if based only on measurements of N₂O emissions

Complex interactions depending on controlling factors over time

- Differences in denitrification between soil type, litter type, length of incubation, etc.
- Time series data for N₂ needed to fully understand responses

How do laboratory incubations compare to field measurements?

Next steps

Laboratory incubations

- Ongoing analysis of results from previous incubations
- Testing improvements in methods for sample analysis and evaluation
- Assessing optimal sample sizes and number of replicates

Establish and test field measurement system

 Test variations of the flushing technique* to achieve lowest possible background N₂ during in situ field measurements

^{*} Well R, Burkart S, Giesemann A, Grosz B, Köster JR, Lewicka-Szczebak D. Improvement of the 15N gas flux method for *in situ* measurement of soil denitrification and its product stoichiometry. *Rapid Commun Mass Spectrom*. 2019;33:437–448. https://doi.org/10.1002/rcm.8363

For more information:

amanda.matson@thuenen.de

Thünen-Institut für Agraklimaschutz

www.thuenen.de

