

Bridging the gap – linking GRACE and GRACE-Follow On by hISST and SLR

07 May 2020

M. Weigelt¹, A. Jäggi², U. Meyer²

Institute of Geodesy, Leibniz Universität Hannover
 Astronomical Insitute, University Bern

- Bridging the gap between GRACE and GRACE-FO
- Bridging the gaps of GRACE
- Cross-validating GRACE and GRACE Follow-On
- Combination of gravity fields from various sources for improved recovery
- Study multi-mission multisatellite environments

courtesy Felix Landerer using JPL mascons – Watkins et al. 2015

hISST data processing

- Kinematic orbits from
 - Astronomical Institute, University Bern
 - Institute for Geodesy, Graz
 - Institute for Geodesy, Hannover
 - European Space Agency
 totalling to 41 kinematic orbit products
 from 27 satellites.
- Accelerometer data used for CHAMP, GRACE and GOCE
- Acceleration approach and combination on the normal equation level using variance component estimation

- Background models
 - JPL Ephemeris DE421
 - Solid Earth tides (IERS Conventions)
 - Solid Earth pole tides (IERS Conventions)
 - Ocean tides (FES2014b)
 - Ocean pole tides (IERS Conventions)
 - Atmospheric tides (AOD1B RL06)
 - Relativistic corrections (IERS conventions)
 - AOD1B dealiasing product RL06

A new differentiator

- Differentiation amplifies noise.
- Low-pass filtering properties of differentiators are used to suppress noise
- Test showed that for sampling >30s a time-shifted 30s filter is optimal.
- M. S. Hosseini and K. N. Plataniotis, "Finite differences in forward and inverse imaging problems–maxpol design," (2017).

Impact on the estimated noise spectrum: here for GRACE A

Combination with satellite laser ranging

9 satellites

Lageos 1	Lageos 2	LARES
Starlette	Stella	Larets
AJISAI	Beacon-C	Blits

Combined estimation:

- gravity parameters till degree 10,
- station coordinates,
- Earth rotation parameter,
- geocenter,
- range biases
- Combination at the normal equation level using variance component estimation

Temporal filtering

Kalman filter:

- continuous Wiener process acceleration (CWPA) model
- accelerations as white noise model

Difference degree RMS w.r.t. GOCO05s

Spatial RMS over ocean areas

Temporal signal evaluation

Trend

Annual signal amplitude

													[cm]														[cm]
0	1	2	3	4	5	6	7	8	9	10	11	12		0	1	2	3	4	5	6	7	8	9	10	11	12	

Filtering + Combination

Coefficient-wise combination S₂₂

Strong weight on hISST+SLR solution due to low variability

Coefficient-wise combination C₇₀

Introduction of systematic errors in the hISST+SLR solution

Spatial RMS over ocean areas

Conclusion

- Mutual benefit by combining HLSST and SLR:
 - SLR improves (dominates) the degree-2 coefficients
 - HLSST provides the higher spatial resolution.
- HLSST + SLR solutions may be best suited for detecting inter-annual and annual variations.
- Short-term variations are not observable due to the limited spatial resolution and the higher noise level of the solutions.
- Combination of GRACE, GRACE Follow-On and hISST+SLR in the Kalmanfilter environment is inferior in periods where GRACE and GRACE Follow-On data is available caused by an oversmoothing due to the Kalman-Filter properties.

Logo 1

