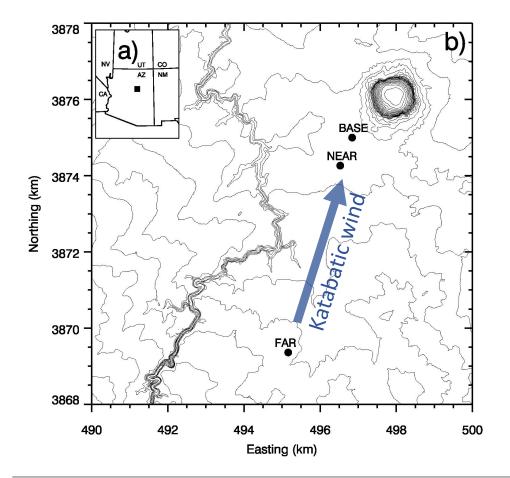


Stable boundary layer height on a gentle slope

Ivana Stiperski¹, Albert A.M. Holtslag², Manuela Lehner, ¹ C. David Whiteman³ ¹University of Innsbruck, ²Wageningen University, ³University of Utah

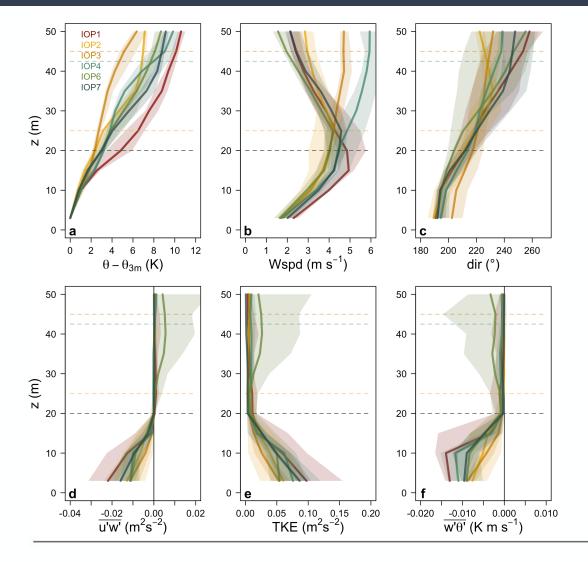
Stiperski et al. (2019) On the turbulence structure of deep katabatic flows on a gentle mesoscale slope. *QJRMS.* doi: 10.1002/qj.3734

Contact: ivana.stiperski@uibk.ac.at


How shallow a slope must be to differ from flat terrain?

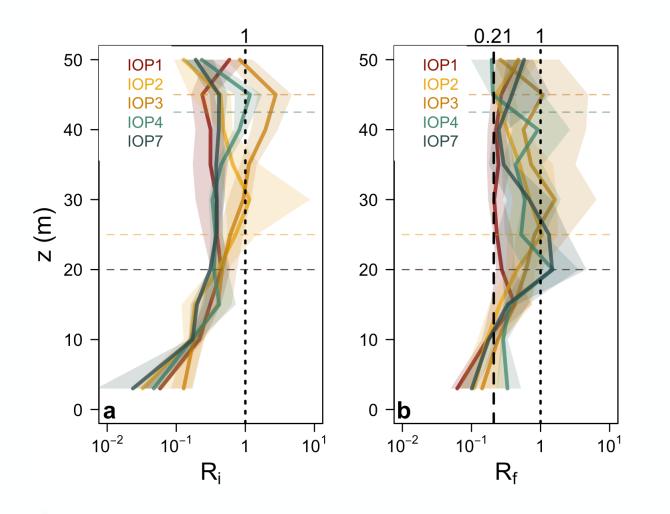
- An SBL over sloping terrain leads to the development of katabatic flows
- Near-surface inversion strength plays a crucial role in katabatic flows, just as it does over flat terrain
- How does a sloping katabatic SBL then differ from a flat terrain SBL?
- We investigate the SBL in deep katabatic flows in the Second Meteor Crater Experiment (METCRAX II) measurement campaign (Lehner et al. 2016)

Data set


METCRAX II campaign: October 2013

- A low-angle (1°) mesoscale (30 km) slope
- Data from the 50-m-high NEAR tower with 10 levels of sonic anemometers
- Six IOPs with deep katabatic flows that develop outside the crater
- Data post-processing: planar fit, 1 min averages, coordinate system oriented into the wind direction at jet maximum

Flow characteristics – deep and shallow flows

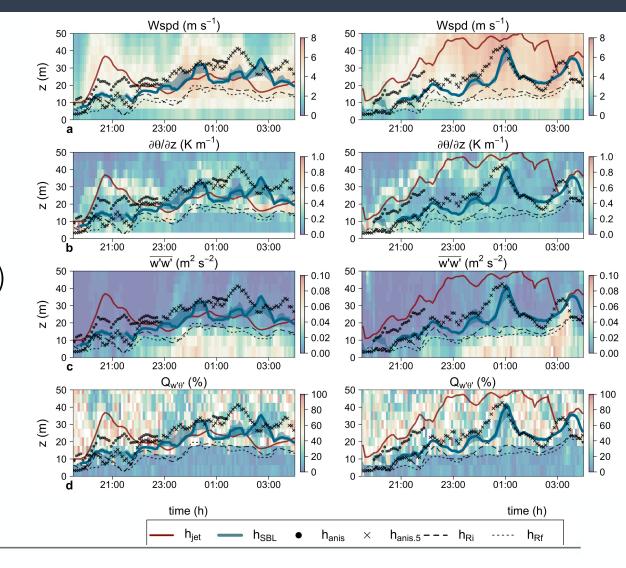

What are the flow characteristics?

- Katabatic flows with a low-level jet maximum develop in stable stratification
- Strongest inversion is above the jet maximum
- Jet maximum height (h_{jet}) varies between IOPs:
- \rightarrow deeper (h_{jet} ~ 40 m)
- \rightarrow shallower (h_{jet} ~ 25m)
- Strong directional shear with height
- Well-developed turbulence below 20 m and strong damping above
- Height where turbulence ceases not related to h_{jet}

Flow characteristics – deep and shallow flows

Why does turbulence cease above 20 m?

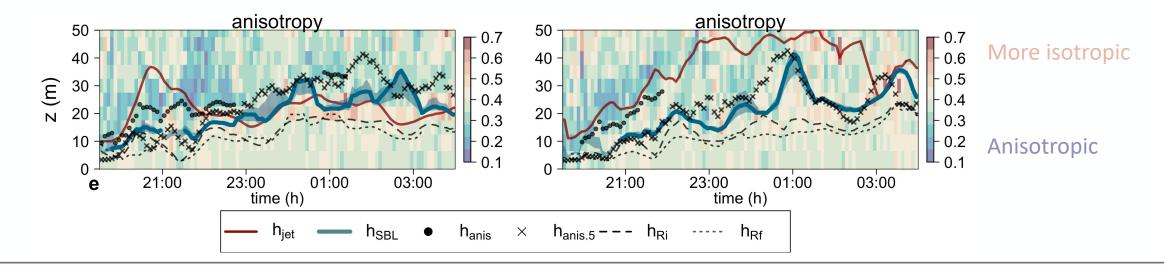
- Profiles of flux (R_f) and gradient(R_i) Richardson numbers increase beyond a critical value above 15 m
- This suggests the stratification is too strong to maintain turbulence
- Since turbulence is maintained to a greater height (20 m) than suggested by R_f (>> 0.21), the turbulence structure is not governed only by the balance between buoyancy, shear and dissipation



Detecting SBL height – using fluxes

How to detect the SBL top?

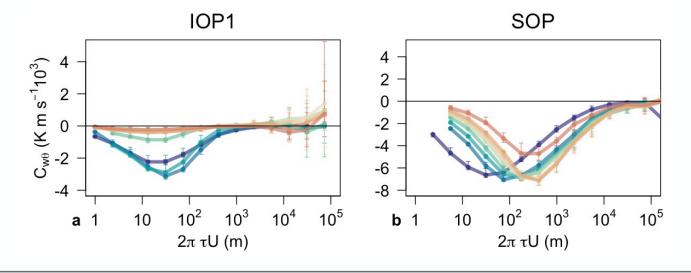
- \rightarrow BL: "Atmospheric layer directly influenced by the surface and characterized by turbulence"
- \rightarrow SBL height (**h**_{SBL}) = median height where turbulence (uw, w θ , TKE) becomes negligible
- h_{SBL} is not correlated with jet maximum height (h_{jet})
- h_{SBL} is not correlated with the height of the strongest inversion $(\partial \theta / \partial z)$
- The height where $R_f > 0.21 (h_{Rf})$ is lower than h_{SBL} but better identifies the layer of most stationary turbulence $(Q_{w'\theta'})$



Detecting SBL height – using anisotropy

Can information on anisotropy help in identifying SBL top?

- Anisotropy provides information on directionality of TKE exchange
- Quantify degree of anisotropy by third invariant y_B of the barycentric map (Stiperski et al, 2019)
- Well-developed turbulence in SBL is more isotropic ($y_B > \sqrt{3}/6$) than above SBL
- \rightarrow Use anisotropy ($y_B = \sqrt{3}/6$) to detect SBL top: h_{anis} (1 min averages \bullet), $h_{anis.5}$ (5 min averages \times)


EGU 2020 | Stiperski | SBL height

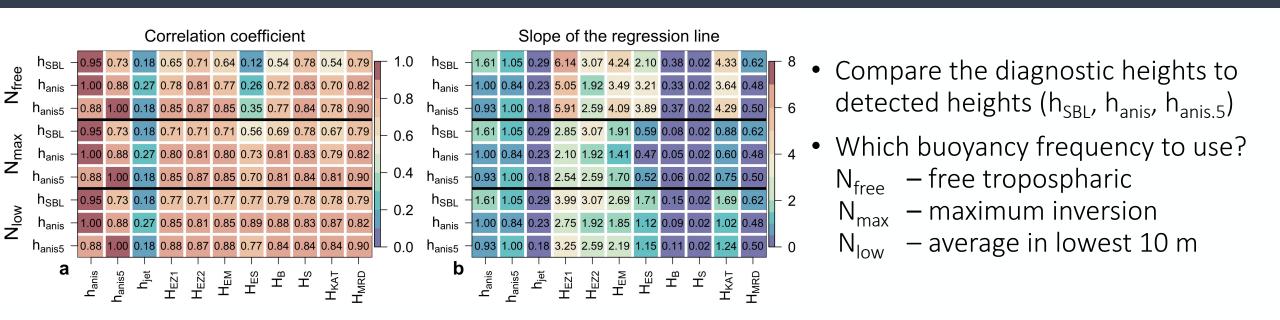
Detecting SBL height – using size of most energetic eddy

How does the size of the most energetic eddy change with height?

- We perform multi-resolution flux decomposition (MRD)
- Length scale of the most energetic eddy ($2\pi\tau U$) is semi-invariant with height in the katabatic flow
- This is different than in non-katabatic boundary layer cases (SOP) where the length scale varies significantly with height in line with surface-layer scaling

EGU 2020 | Stiperski | SBL height

Testing different flat terrain SBL height formulations


Variable	Name	Definition	Reference
$H_{\rm EZ1}$	Flat-terrain equilibrium SBL height	$H_{\text{EZ1}} = \frac{0.4u_{*s}}{ f } \left[1 + \frac{0.4^2 u_{*s}(1 + 0.25NL/u_{*s})}{0.75^2 f L} \right]^{-1/2}$	Zilitinkevich and Baklanov (2002)
$H_{\rm EZ2}$	Flat-terrain equilibrium SBL height	$H_{\rm EZ2} = 0.5u_{*s}^2 \cdot fB_s ^{-1/2}$	Zilitinkevich et al. (2012)
H_{ES}	Flat-terrain equilibrium SBL height	$H_{\rm ES} = \begin{cases} 10u_{*s} \cdot N^{-1} u_{*s}^2 N B_s ^{-1} > 10\\ 32(B_s \cdot N^{-3})^{1/2} u_{*s}^2 N B_s ^{-1} < 10 \end{cases}$	Steeneveld et al. (2007)
$H_{\rm EM}$	Flat-terrain equilibrium SBL height	$H_{\rm EM} = u_{*_{\rm S}} \cdot N^{-1} (f \cdot N^{-1})^{-1/2}$	Mironov and Fedorovich (2010)
H _B	Buoyancy length-scale	$H_{\rm B} = (\sigma_w)_s \cdot N^{-1}$	Monti <i>et al.</i> (2002)
$H_{\rm S}$	Shear length-scale	$H_{\rm S} = (\sigma_w)_s \cdot \left \frac{\partial \overline{U}}{\partial z} \right _s^{-1}$	Monti <i>et al.</i> (2002)
$H_{\rm KAT}$	Prandtl scale	$H_{\rm KAT} = 1/4 \cdot u_{*_S} \cdot (N \sin \alpha)^{-1}$	
$H_{\rm MRD}$	MRD scale	$H_{\rm MRD} = 2\pi U \tau_{max}$	

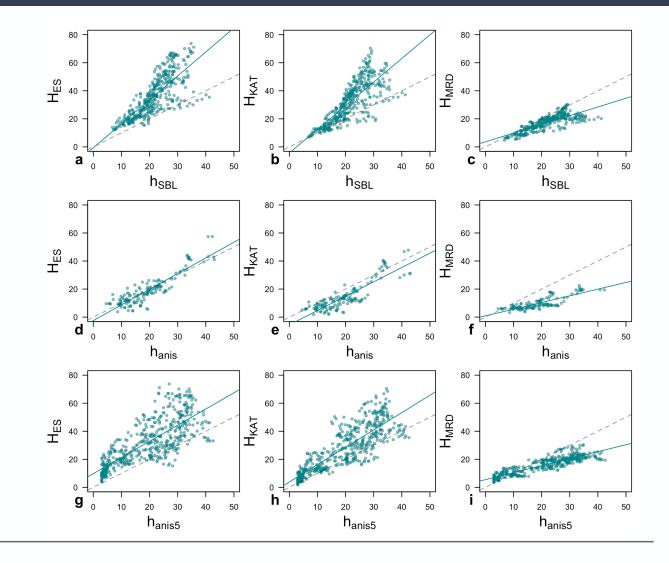
Note: *N* is the buoyancy frequency, u_* is friction velocity, *L* is the Obukhov length, σ_w is the standard deviation of vertical velocity, *f* the Coriolis parameter, *k* the von Kármán constant taken as 0.4, and B_s is buoyancy defined as $B_s = (\overline{w'\theta'})_s g/\overline{\theta}_v$, where $(\overline{w'\theta'})_s$ is the kinematic sensible-heat flux. Subscript *s* denotes values measured at the surface (i.e. 3 m).

Testing different flat terrain SBL height formulations

- Flat terrain equilibirum heights using $N_{\rm free}$ show low correlation to detected height and significantly overestimate it
- Using local stability (N_{low} or N_{max}) in flat terrain equilibrium height significantly improves the correlation with detected SBL heights
- Most appropriate formulations: H_{ES} using N_{low} , H_{KAT} , H_{MRD}

universität

Innsbruck


Testing different flat terrain SBL height formulations

How to best detect the SBL height?

- h_{anis} outperforms h_{SBL}
- \rightarrow has larger correlations to diagnostic formulations
- ightarrow shows better distribution of residuals
- ightarrow regression slope is closer to 1

Can we detect SBL from a single level?

 Good results for H_{MRD} mean it is possible to detect SBL height in katabatic flows from a single measurement level if it is below the jet maximum

Conclusions

- A shallow mesoscale slope (1°) leads to katabatic flow formation
- Katabatic flows determine the turbulence structure
- Determining SBL height (h_{SBL}) is ambigous
- h_{SBL} is not correlated with the height of maximum inversion or the jet maximum height
- h_{SBL} is shallower than flat terrain formulations suggest
- h_{SBL} is controlled by local stability (N_{low}), not stability above the SBL (N_{free})
- Anisotropy is a better diagnostic for identifying SBL height than fluxes
- In katabatic flows it is possible to diagnose SBL height from a single measurement level based on the size of the most energetic eddy

